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FINAL TECHNICAL REPORT

EXECUTIVE SUMMARY

This is the final report for grant AFOSR-89-0518. While its principal portion is the
last part of this report, it may be appropriate to summarize first the achievements
of the past three years. We begin by reprinting the

L 1989-90 Annual Technical Report Executive Summary; and the

2.1990-91 Annual Technical Report Executive Summary.

The above two items give an overview of our activities and achievements during
the first two years of this grant.

The main part of the current report is entitled

3. Artificial Intelligence Methodologies for Aerospace
and Other Control Systems;

it is the culmination of a project by the Principal Investigator and one of his

students. The major subjects addressed in this report are the following-

3a. Neural Networks Approach to Control Systems;

3b. Differential Games with Neural Networks;

3c. Aircraft Control in the Presence of Windshear;

3d. Optimal Control in a Layered Defense System.

Concerning our other activities in the course of the year: we attempted to report
on most of them by letter to AFOSR, as they occurred (Copies of the letters
enclosed). Examples are presentations given by o"ir group and publications, of
which we have already provided copies to AFOSR. We list these here in For
chronological order.

0
4. Teaching Neural Networks Nuclear Physics; 0

(an extensive undergraduate project) i 0

5. System Identification with Dynamic Neural Networks;
(preprint) .. _.•••,

Availability Codes

Dist Speola].

~Av• end/o,



6. Control and Disturbance Rejection with a Dynamic Neurocontroller;
(preprint)

7. Maneuver Prediction in Air Combat Via Artificial Neural Networks;
(reprint)

8. Adjacency of the 0-1 Knapsack Problem;
(reprint)

9. On Differential Games With Neural Networks;
(Proceedings of an AFOSR Workshop)

10. Character Recognition: Qualitative Reasoning and Neural Networks;
(reprint)

11. Collision Avoidance and Low-Observable Navigation
in a Dynamic Environment;

(reprint)

12. An Optimization Algorithm with Probabilistic Estimation;
(preprint)

There were two particular activities with which we were involved extensively in
the course of the past year:

13. Organizing several reciprocal visits, presentations and discussions between
our group and the Analysis Group at HQ MAC, Scott AFB;

14. Co-sponsoring "ANNIE '92": an international conference on artificial
neural networks in engineering.

Finally, we also established a working relationship with three St. Louis area
companies:

ESCO Corporation:
(Collaborating with them to develop an AI assisted

and PC based unarmed aircraft defense system)

United Vanlines:
(Helping them to develop optimal routing and scheduling algorithms)

St. Louis Post Dispatch:
(Attempting to apply the Al technology developed by

us to the communication needs of the 21st century)



ANNUAL TE-CHNICAL REPORT EXECUTIVEI SLIWM!ARY

The principal portion of this Annual Technical Report is a work by the Principal Investigator and
one of his students:

Semantic Control In Ccntinuous Systems:
Applications to Aerospace Problems.

This report discusses our new methodology for dealing with time dependent control and
optimization problems: and. in particular, its application to combat path planning in the
presence of multiple opposing radar coverage, with time dependent scheduling problems and
with flight and fire control via logic programming.

Preceding this report we are presenting a brief discussion, intended to explain and justify why we

c•ci ,cod iO broaden our original proposed alms and begin to consider

Stochastic Optimization Problems.

The importance oa this extension seems particularly evident in the light of the tasks and missions
of

Desert Sword.

In the course cf the reporting period we also submitted to AFOSR copies of the writeups of two
additional projects that we have completed. We are attaching copies of the relevant covering
letters here. These consisted of the following:

Flight and Fire Control with Logic Programming
by Ervln Y. Rodin and D. Geist; Comp. and Math. with Applications.

Vol. 20. No. 9/10. pp. 15-27, 1990.

Methods for Stochastic Optimization
by DI Yon and H. Mukal: a Technical Report by the

Center for Optimization and Semantic Control.

We also transmitted copies of the doctoral dissertation of another student of the Principal
Investigator. While that person was not supported by this grant, and his work then appeared to
have no relevance to the project at hand, we felt that since the Artificial Intelligence
methodologies employed in that dissertation were derived from ours, it may be appropriate to
present those results to the AFOSR. Now, however, with the threat of large scale Iraclul sabotage
of Middle Eastern oil fields a possibility, that dissertation may become very relevant indeed:

Acidic Deposition Control Through an Artific!al Intelligonce Method
by Ji-Shing Lin.

We were also proud to report In the course of the past year that one of our graduate students,
Kevin Ruland, who has been involved with our resea'ch projects for two years now. was
awarded the very prestigious

Mercury Seven Fellowship.

An additional item of possible relevance here Is that the P.I. was elected in the course of the
reporting period to be an Assoc.ate Fellow of the

American Institute of Aeronautics and Astronautics,

and also a member of the Advisory Committee of its St. Louis chapter.



Finally, we are glad to report that our direct contacts and collaboration with various elements of

the

United States Air Forco

hove been increasing and it seems that our group is becoming progressively more useful to

them. In this regard, we can list the following accomplishments for the period of this report:

1. Several working visits by USAF/MAC personnel at our facilities; and several visits by us at

Scott Air Force Bae,

in order to discuss reserch problems and results attained by us. (See attached letter by

Col. J.D. Graham, and the page after it.)

2. Volunteer Service Agreement between Scott AFB and Washington University, as

proposed and implemented by the P.I. under this Grant.

3. A Washington University - MAC Intern Program's description.

4. The nomination of the P.I., Dr. Ervin Y. Rodin, to membership in the AF Scientific Advisory

Board. by Lt. General A.J. Burschnick.

5. We also list here the Scott AFB/MAC operational projects on which we are currently

working:

Closure Optimization
Defenso Courier Service

Aeromedical Evacuation

6. Finally. we should also mention in this section that we are making excellent progress on

the development of integer constraint relaxation paradigms. which will be particularly

useful for the KORBX computer of Scott AFB

Finally, we should mention here that, in addition to our previous good working relationship with

Rockwell International, we have also developed close contacts and mutual interests with

McDonnell Douglas and with Emerson Electric. Scientists and engineers from these companies

now regularly visit with us: one such group visit took place in conjunction with our full-day

presentation for visitors from

HQ, Strategic Air Command.

We are attaching a one-page informational oheet about that also.

fK



ANNUAL TECHNICAL REPORT EXECUTIVE SUMMARY

This is the annual report for the second year of our current three-year grant: thus, several
of our major projects are in the midst of being developed. It may be appropriate, therefore, to
begin this report with brief descriptions of those projects that we expect to conclude in the course
of the coming year. There are actually three such projects, each of which will become a doctoral
dissertation under the guidance of the Principal Investigator:

1. Polyhedral Computations For Many-To-Many Routing Problems;
Applications To Air Transport;

2. Artificial Intelligence Methodologies In Control Systems;

3. System Identification With Dynamic Neural Networks.

We begin our report by providing brief descriptions of the current status of our research
for each of the above subjects.

Several of our projects have their genesis in our collaborative efforts with the CINCNMAC
Analysis Group of HQ/MAC at Scott AFB. The formal arrangement of this collaboration was set
out in a Volunteer Service Agreement between 375 MSSQ/MSCS Scott AFB and Washington
University, the details of which were included in our annual report last year. During this past
year 2 groups of two senior students each, and one group of three students performed studies
relating tD the following MAC problems:

1. Defense Courier Routing Problem;

2. Closure Optimization;~

3. Operational Support Aircraft Vehicle Schedu!ing Problem.

We presented these reports to the technical staff of the CINCMAC Analysis Group in the
course of one of our regular meetings with them; in fact, we also presented to them an entire
written report about the first two of these, with copies also provided to AFOSR. For this reason,
we are including in this report only the first few pages of that transmittal. However, we are
attaching here a copy of the third and shortest report, which was not submitted to the AFOSR.

It may be appropriate to mention that a fourth senior student group was also working on
a project related to this grant (but not related to our Scott AFB oriented work). Only the cover
page of their report, entitled

Situation Assessment In Medium Ra~nge Air Combat,

is included in this Annual Report.



Several of our research resulIts were prepared in the course of this past year for
publication. We are including some of these in this report. The publication on

L. Adjacency of the 0-1 Knapsack Problem,

is a byproduct of our work on S!r.Mantic Control In Continuous Systemns: Avplications To Aerospace
Problem&, which was presented in last year's Annual Report. The next item,

ii. Differential Games and Neural Nets,

was developed jointly with McDonnell Douglas Missiles Systems Company scientists, and it is an
ongoing project and collaborative effort.

Our attempts to utilize neural networks in control, optimization and differential game
type problems led us to the realization, that much more powerful, self-tuning networks of this
type should be developed. This led to our first n'port on

iii. Neural Networks With Local Memory For Control Systzms,

which is our next enclosure.

We reported last year on our work on Tactical Air Combat Maneuvers: Recognition And
Guidance Via Neural Networks. This past fear we attempted to utilize that same technology, to
identify the output of an arbitrary 'black box". A first step in that direction was our next
included item, consisting of our work on

iv. Character Recognition: A New Approach Using Neural Networks.

The last item in this section is in fact the longest one: a detailed report on the

v. Application of Semantic Control To A Class Of Pursuer-Evader Problems.

-This was a project which we undertook jointly with scientists from the ESCO
Corporation. From our point of view, the importance of the research here was in proving the
feasibility of creating a rule based expert system, which is capable of c.- ";ng on exact optimization
algorithms as subroutines, and which can be implemented on small computers. This is still an
ongoing project: we expect to provide further results in next year's report. (Note: we are not
including here the lengthy appendices to this work, which consist of detailed computer listings.)
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Friday, January 31, 1992

Dr. Neal Glassman
AFOSR/NM
Bldg. 410, Boiling AFB
Washington, DC 20332-6448

Dear Neal:

As I may have mentioned to you in the past, I am always trying to get as many
undergraduates as possible to get involved in our various research projects.
Some of these result in nice outcomes, and some are just so-so.

DLring the past year I encouraged one such undergraduate to try his hand at
using neural nets for a physics related problem. Since his results were pretty nice,
I decided to send you and Arde a few copies, enclosed here.

With belated good wishes for the new year and best personal regards,

Sincerely yours,

Ervin Y. Rodin
Professor and
Director, COSC

enc.: 3 copies of Teaching Neural Netwo Nuclear Physics

W•ahinl.won University
Cimnpus I1ox 104I0

:" St. IA)UiS, Miss.uri 63139-.48-99
Tel; (31-4) 899-(A0. -5806
AX: (31-4) '26-4-3-1

_ _ _ _""_ _ _ _ _ _ -" - . '" _'k... -- _ _.._" - •
-- -------------- - --- •z------------+
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Monday, June 1, 1992

Dr. Arje Nachman
AFOSR/NM
Bldg. 410, Boiling AFB
Washington, DC 20332-6448

Dear Arje:

Since a portion of our research under our present grant involves the tuning and
utilization of neural networks, and since we have made some nice strides in Lhat
direction, we decided to publish some of our results related to this area. So, to bring this
to your early attention, I am sending you attached two preprints from our Center:

1. System Identification With Dynamic Neural Networks; and
2. Control and Disturbance Rejection With A Dynamic Neurocontm'oller.

With best regards,

Sincerely yours,

Ervin Y. Rodin
Professor and
Director, COSC

enc.: 3 copies each of 1. and 2. above

cc. Dr. Neal Glassman

W'ashington niversinv
Camp11uN Bo~x 10-40
St. LI• )uit. Missoutri 013 I39-.1899
TI:l % 31 -4) 889-i000-, -W
FA/X: (3 .1 -1) -26.,-•.4 -1
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Monday, July 6,1992

Dr. Arje Nachman
AFOSR/NM
Bldg. 410, Boiling AFB
Washington, DC 20332-6448

Dear Arje:

I am sending you attached three copies of another paper, for which support by both
AFOSR 870252 and AFOSR 890158 was acknowledged:

Mancuver Prediction In Air combat Via Artificial Neural Networks,

by myself and S. M. Amin.

With best regards,

Sincerely yours,

Ervin Y. Rodin
Professor and
Director, COSC

enc.: 3 reprints

cc. Dr. Neal Glassman

Wishinfgton I niversitv
C lrnpus 114)x 1O-tO
St. IA)uis,% Misnuri 63139--iH99
Tel: (31 -)•,89-(M'. -5806
FAX: (31-0 I 26-.-.##3
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Wednesday, August 26, 1992

Dr. Arje Nachman
AFOSR/NM
Bldg. 410, Boiling AFB
Washingion, DC 20332-A148

Dear Arje:

I am sending yu;a attached three copies of a paper, for which support by AFOSR 890158
was acknowledged:

Adjacency of the 0-1 Knapsack Problem,

by D. Geist and myself.

With best regards,

Sincerely, yours,

Ervin Y. Rodin
Professor and
Director, COSC

enc.: 3 reprints

cc. Dr. Neal Glassman

W'ashington Vl niv'e.rsity
C:ampus Mi x 10-40

S"t. li)mi, Mi.',. Auri 031 .39--is99)
Tel: { 31.0 ) ',Sgg (• ) 6.•4k
FX- (31. -o -t 26--4-#34
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Tuesday, September 8, 1992

Dr. Neal Glassman
AFOSR/NM
Bldg. 410, Boiling AFB
Washington, DC 20332-6448

Dear Neal;

My apologies for responding to your request late; however, I was out of town when the messages arrved.
So now here is the information for the period requested:

Publications:

"On Differential Games With Neural Networks" with Y. Wu), AFOSR Workshop of Theory and
Applications of Nonlinear Control, St. Louis, MO, 1991.

"Character Recognition: Qualitative Reasoning and Neural Networks" (with Y. Wu and S. M. Amin),
Math. and Comp. Modelling, Vol 16, No. 2, pp. 95-104, 1992.

"Collision Avoidance And Low-Observable Navigation In A Dynamic Environment" (with S.M. Amin
and C. Ruan), Math. and Comp. Modelling Vol 16, No. 5, pp. 77-98, 1992.

. e nts Supported:

Kevin Ruland; Michael Meusey; James Revetta; Mark Monical.

Undergraduate Students Supported:

Travis Cusick.

Postdoctoral Associates Supported:

S. Massoud Amin.

E=Dtnal Honors Received:

Elected Associate Fellow of the American Institute of Aeronautics and Astronautics.

I hope this will meet your requirements.

Best regards,,

Ervin Y. Rodin
* Professor and

Director, COSC

Si 1A ,lh . Nl'fi s i| | 11 A.' 9 sia m

TOl 13 1 #) Nil) (A), *Slkl,



±j ashi*ng,ýton
\\V'1t.kIQ I' II~ I ' I\ I( LN I !1"0111mdsmw I ''

Wednesday, November 25, 1992

Dr. Arje Nachmian
AFOSR/NM
Bldg. 410, Bo~ling AFB
Washington, DC 20332-648

De ..r Arje:

I am rending you attached two copies of a report, for which support by AFOSR 890158
was acknowledged:

.An Optimization Algorithm With Probabilistic Estimation,

by D. Yan and H. Mukaj. A slightly different version of the report will also appear in
the Journal of Optimization Theory and Applications.

With best regards,

Sincerely yours,

Ervin Y. Rodin
Professor and
Director, COSC

Wo~hinflg III I I'1rIr'm

Tel 131I4 xN99 (ftlr. *XO4

PA (34) -2-44.1
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Tuesday, September 22, 1992

Dr. Neal Glassman
AFOSR/NM
Bldg. 410, Boiling AFB
Washington, DC 20332-6448

Dear Neal:

I am sending you attached the program for ANNIE '92, a conference in which we are
involved. Our Center is a Sponsor of the Conference; my colleague, M. Amin and I are
on the Organizing Committee; I am chairing a session and we are presenting two
papers. Both of these papers carry acknowledgement of support by AFOSR.

With best regards,

Sincerely yours,

Ervin Y. Rodin
Professor and
Director, COSC

enc.: 1 program

cc. Dr. A. Nachman

('.higtop S I| 'nivers-lt

St. I•ARS, Misso uri (.03139--iX9)

Tel: (31-k) 9-600". -5800
FAX: (31-1) "26-+-i3-i



TECHNICAL REPORT

Center for Optimization and Semantic Control

P.O.Box 1040
WASHINGTON UNIVERSITY
St. Louis, Missouri 63130-4899

ARTIFICIAL INTELLIGENCE METHODOLOGIES FOR

AEROSPACE AND OTHER CONTROL SYSTEMS

by

Ervin Y. Rodin

and

Yuanan Wu

./

Janua , 1993

Another v'ersion of this report was submitted to the Sever Institute of Technology
by the second author, under the direction of the first author, in partial fulfillment
of his requirements for the degree of Doctor of Science.



ABSTRACT

ARTIFICIAL INTELLIGENCE METHODOLOGIES FOR
AEROSPACE AND OTHER CONTROL SYSTEMS

Artificial intelligence methodologies have been applied to the modeling and
implementation of cor.trol systems and differential games problems. To be more specific,

artificial neural networks, a multiple instruction multiple data parallel processor tuned by

connection weights, are used to model a control system or used as an identifier/controller

which functions as a mapping between two information domains. Based on a new
paradigm of neural networks consisting of Neurons With Local Memory (NLMs), the
representation of a control system by neural networks is discussed. Using this

representation, the basic issues of complete controllability and observability for the

system are addressed. A separation principle of learning and control is presented for
Networks with NLMs (NNLM). The result shows that the weights of the network will

not affect its dynamics. The principle may be utilized to prespecify t;.t steady state
properties of the system. Modeled by NNLM, the resulting system is a typical nonlinear

* /one which, through rigorous mathematical analysis, is shown to be locally linearizable
"via a regular static state feedback and a nonlinear coordinate transformation.

Significant advances have been achieved in applying differential games theory, a theory
dealing with most of conflicts in daily life, economics, military affairs, etc., to practical

problems. In this dissertation, this theory has been thoroughly addressed from a new

point of view. A configuration, based on the paradigm of semantic control, is proposed,
which can be used to derive two paradigms of differential games with neural networks.

Generally, two neural networks are used in each of these two paradigms. One network is
called the neural-identifier and it is used to identify the control strategy of one's opponent.
The other one is the neural-controller which, taking the estimate of the control strategy of

one's opponent, outputs the control value for oneself. The issue of existence of solutions

is discussed. To demonstrate the effectiveness of the method, a simulation experiment

was carried out and studied for a pursuit-evasion game problem.



In Chapter 3 a learning control algorithm is developed. The algorithm can be used to

evaluate the weight of a neural controller in the paradigms proposed in the chapter or in

the control systems. Using the learning control algorithm, we study the aircraft control
problem in the presence of wind shear.

In Chapter 4 we shall discuss another aspect of artificial intelligence techniques in control

systems: rule-based system in a class of pursuit-evasion game problems. The pursuit-

evasion game problems can be converted to classical optimal control problems. The

optimal control solution is obtained. The solution offers several advantages such as

significant time-saving in imiplementation. Further research directions are addressed in

the last chapter.
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ARTIFICIAL INTELLIGENCE
METHODOLOGIES FOR

AEROSPACE AND OTHER
CONTROL SYSTEMS

1. Introduction

Much effort has been directed during the past two decades in attempting a merger

of the areas of Artificial Intelligence and Automatic Control [4, 241, 56, 79]. Such

a merger would combine the rigorous, precise, and analytical foundation of auto-

imatic control theory with the heuristic, qualitative and efficient reasoning aspects

of artificial intelligence. Such a merger would provide a practical. powerful mech-

"anism and framework and effective computational tools for the modeling and

analysis of fuzzy, time-dependent, noisy and uncertain models describing ph\ysical .

plenomena. The theory and alpplications of such a merger doe'. s liow tIw power

of the efforts in this area for modeling various real processes [25, 76. 77. 79]. hlis

st uly attempts to combine the techniques of these two areas to develo1) new tools.

to enhance the analysis of a mature control theory, and to apply these techniques

to real-time processes. We begin in the next section to discuss some basic issues

concerning the combination of artificial intelligence and automatic control.

/ K.



1.1. Intelligent Control

In this sectioa. we shall summarize the history, research efforts. and application

aspects of intelligent control. In particular, we shall explore its relationship with

adaptive control. semantic control [761, more closely related expert control [6].

and knowledge-based control systems [S7].

Among others. Saridis [79] gave a formal definition for what he termed an

Intelligent Machine:

Definition 1.1 Intelligent Machines are machines that are designed to Iperform

ainthropomorphic tasks with minimum interaction with a human operator.

Intelligent control then is the function that drives an intelligent machine. In-

telligent control can also be considered as a fusion between mathematical and

linguistic methods and algorithms applied to systems and processes. Intelligent

control. which is hierarchically distributed, is composed of three basic evels of

control: the organization level, the coordination level, and tile executiLn level

(see Figure 1.1). fKOECGE.

C 8,:KOWEDGE

DISPATCHER

HAROWARE LHARDWASE
CCNTAOL C RNTROL

P•CESS qC-SS

Figure 1.1: Hierarchical Intelligent Control System
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The organization level is designe'l to perfo)rm such operations as receivintz and

reasoning with comninaInds. planniing. making high level decisions from loun-t,'rm

memorhies. prov iding feedback. and exchanging long-term memory. Prokiabili.t-ic

Models are provided for a mechanism so that. it can select Ani appropriate t1a&-k fuo

-a given command. The concepts of commands. task commands, events. activities.

random variables a.-ociated wit It events. and' fuinctions are then intr•druced, to

.pecify analytically the functions of the orgaiiizer. This level. which is ,h'si!Žnid to

imitate functions of human behavior, may be treated as an element of knowledge-

based systems. Thus. knowledge representation. knowledge flow. and knowledge

processing and management are the main activities on this level.

The coordination level is an interactive structure serving as an interface he-

tween the organization and execution level. It formulates the control problems

- associated with the most probable. complete and compatible plan formulated in

the organization levels. Several individual coordinators are associated with spe-

cific hardware execution devices. Each of them performs a pre-specified number

of different functions. Two types of feedback information exist for each coordi-

nator: [i] off-line feedback information which is fed to the organization level and

is stored in long-term memory: and. [ii] on-line or real-time feetdback information

which is issued by each executor in the execution level, received by the roordina-

tor and stored in short-tterm mniory. The on-line feedback in.formation may also

be used by other coordinators for the evaluation of the overall accrued cost of the

coordinate level.

The execution level executes the appropriate control functions. In particular,

optimal control theory with a non-negative functional of the systems states or

/



with an entropy 11(u) for a particular control action u(x. t) ;s discussed by Saridis

[79]. However, various control schemes may be employed on this lev

.To represent the uncertainty which may be present on each of these levels.

Saridis introduced the concept of entropy, a probabilistic measure of uncertainty.

All levels of a hierarchical intelligent control are measured by entropies and their

rates. With the introduiction of entropy. the theory of hierarchically intelligent

controls may be stated as the following:

The theory of an Intelligent Machi'ze may be postulated as the mathematical

problem of finding the right sequence of decisions and centrols for a system struc-

tured according to the principle of increasing precision with decreasing intelligenct

(constraint) such that it minimizes its total entropy.

Although Saridis is the first one who has worked on Intelligent Control Theory

in a systematic way, and has attempted to to lay a mathematical foundation for

the theory, other people have also actively worked on this area. Among these
0

people are Astr6m [5], Fu [24], Wiener [99] and Meystel [59. 60, 61, 62]. In

1[5], Astr6m discussed the issues of intelligent control from a more practical and

application-oriented point of view. Primarily aiming at PID Controllers, Auto-

matic Tuning (e.g.. relay autotuner), Adaptive Control, and Expert Control, he

reviewed briefly the history of automatic control. He explored the realistic issues

of practical real-time processes. such as sampling period, model structure, uncer-

tainty, disturbance, and, in favor of PID controller and self-tuning regulator, he

discussed the ideas and application areas of Automatic Tuners and Adaptive Con-

trollers. Unlike Saridis, who combined the techniques of Al, Operational Research

and conventional Control Theory and treated the issues of intelligent control in a
0

more analytical and systematic way, Astrim mainly discussed the problems of an



automatic tuner and adaptive controller, implying that the virtual part of intel-

ligent control lies in the system's capacity to adapt to a tilne-varving/unknown

environment, be convenient to end-users, have an automation of regulator param-

eter tuning, and assume less prior information for the system to be controlled.

0

Aithough a common point can be observed for both Astr6m and Saridis -

0

adaptation to unknown/time-,.arying environments - Astr6m emphasizes incor-

porating more human intelligence into the process controllers as in the position

of an instrument engineer while Saridis views the intelligent control as an overall

structure of the whole organization as in the position of a Chief Executive Officer.
0

In this sense, the category that Astr6m discussed as intelligent control falls into
0

what Saridis termed "Executive Level"; however, Astr~m treated various issues

in a more detailed, practical and realistic way.

It is interesting to know that there exists another type of control system ca-

pable of intelligence: an Expert Control System (see Figure 1.2). Ati intelligent

control system with the function of supervision and containing a knowledge-base,
0

is categorized by Astr6m [5, 61 as an Expert Control System. The object of expert

control is to encode knowledge representation and decision capabilities to allow

for automatic intelligent decisions and recommendations rather than by prepro-

grammed logic. The development of an expert control system is motivated by

the fact that heuristics plays an important role in PID regulators. Thus, a more

efficient, robust, yet cruder way of implementing heuristics may be needed. De-

signing an expert control system, which has the capacity to orchestrate a range

of different control algorithms for different control goals, seems to be the right

answer. Analogous to an Expert System in the field of Artificial Intelligence, an
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expert control system consists of the system data base. the rulebase, the inference

engine, the user interface, and the planning process.

Figure 1.2: Block Diagram of An Expert Control Systems

In an expert control system, the system data base contains constraints on oper-

ational sequencing; facts (or static data such as sensor measurements, tolerances.

operating thresholds, etc.); evidence (or dynamic data such as sensors, instrument

engineering reports. and laboratory and test reports); hypotheses, which are gen-

erated and stored in the data base, e.g., various state estimates; and goals (either

static goals or dynamic goals: static goals include the wide array of performance

objectives: dynamic goals are those established on-line).

The rule-base of an expert control system contains production rules. such as

if-then rules. The conditions of the rules are usually facts and hypotheses from

the data base while the results of the rules are the actions. such as activation of

controllers. The rules may also be viewed as functions operating on the strategies.

The inference engine has the same meaning as its definition in the traditional

expert system, which functions according to different strategies.

An important element of an expert control system is planning. In view of the

difference between the conventional control systems and the expert control sys-

tems which deal with a process in a more ambiguous. more qualitative way, the

.. ,/ , . ..-.. : .-./. ,' .
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planning process of an expert control system should be implemented according to

this difference. Various algorithms are provided for supervision, analysis and sig-

nal generation. An expert control system, which separates the control algorithms

from the logic, decides when to use a particular algorithm. The planning may

be viewed as an action of search in a logic network. forming a path to reach the

, goals. Its function involves issuing a command to change the production goals

and change the process with its requirements.

Comparison of an expert control system with an autotuner, which is what
0 0Astr~m meant by an intelligent controller, is given by Astr~m in [5]. Although

both schemes can tune thelparameters for a conventional controller, e.g. a PID

controller, an expert control system usually has a more efficient way of interacting

with a human operator because of its supervision functionality, linguistic interac-

"" tion capacity, and listing capacity. Thus, depending on each individual application

"problem, one can choose a4 appropriate scheme of control system structure.

Another effort at combining Al techniques and control theory has been in

developing the knowlcdge-based nested hierarchical controller [62] for the analy-

sis and design of autonomous robots (59]. The structure of a multi-resolutional
a (pyramidal) nonhomogeneous system of knowledge representation interacting with

a planning/control system was introduced by Meystel. A structure of this tvr~e

gives not only unique capabilities of knowledge representation but also a number

of powerful algorithmic capabilities, such as a joint planning/control structure,

planning in traversability spaces, minimum-time dynamic navigation, knowledge-

based control, and others which are promising for autonomous intelligent ma-

chines. This type of controller, which employs joint multi-resolutional planning-

control procedures, algorithms of enhanced nested dynamic programming, the



hybrid world representation, and linguistic clauses, has been implemented in an

intelligent mobile robot IMAS-2 [59].

Knowledge for the choice of control is represented as a descriptive structure in

a fuzzy linguistic representation space (FLR-Space). This structure is obtained in

the form of a semantic network from a set of texts. The nodes and the relations

in the structure can be evaluated numerically. Time behavior can be associated

with the structure, and hence. a function or a sequence f(to),. -",f(ti) can be

considered as a trajectory of motion starting with the initial state and ending at

a fixed state. Although other control schemes can be considered, so far only cost-

optimal control processes have been studied in [59]. The control strategies are

obtained via a sequence of Hamitonians H, D H2 D ... D Hi for each of the levels

of the hierarchy. The algorithm of nested dynamic programming provides the

major mechanism for obtaining the control strategies. Nonhomogeneous models

which are not in the form of a system of algebraic and/or differential equations a.re

used for various reasons[59]. If the analytical model is unknown, one can usually

organize a pseudo-analytical model using tabulated data. It seems natural to

consider the use of production systems (PS) for matching the linguistic nature of

the original world description.

Recent works by Rodin [76] on Semantic Control Theory have been successful

in several cases, such as [2.5. 77]. As another important and unique approach to

combining Al techniques and control theory, Semantic Control theory allows: (1)

the system to adapt to varying/unknown environments, (2) enhancing human-

machine interaction, and (3) for on-line planning/goal selection. A semantic con-

trol system usually consists of three parts (see Figure 1.3): [i] Identifier; [ii] Goal

S.i ._. /_, " -: "' -' 'V -. . ," -



Selector: and [iii] Adaptor. Their functions, when applied to a situation governed

by differential games (for instance), are as follows:

(i) Identifier: The Identifier block identifies through sensors and a knowledge

base the differential game, parameters. targets (if any) and role of each

player.

(ii) Goal Selector: The Goal Selector solves the differential game chosen by

the Identifier block. The results are the optimal trajectories, barriers and

"controls.

(iii) Adaptor: The Adaptor determines the controls that cause each player to

"-best" follow the optimal trajectory determined by the Goal Selector.

* SnW.

.na..em Ua

- -,.----------

Figure 1.3: Semantic Control Paradigm

Applications of semantic control theory in problems of air-combat, a class of

pursuit-evasion game, can be found in [25, 771. From these applications, one

can see that the theory does provide a powerful, fundamental framework and

mechanism for modeling a real and complex system as well as provide on-line

adaptation to an unknown environment, on-line goal selection and implementation

of lower-level execution functions.

4
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From above, we have seen that several intelligent con- schemes have been

proposed in the area of intelligent control. They are Intelligent Control by Saridis

[79], Automatic Tuning by Astr6m [5], Expert Control Systems by Astr6mr [6, 5],

Knowledge-based Neted Hierarchical Controller by Meystel [6.;] and Semantic

Control Theory by Rodin [76]. These schemes are proposed from different points

of view to deal with many complex practical systems. They have been successful

in a variety of applications [5, 25, 59, 77, 79]. A common point of these schemes

is their capability of adapting to the changing environment. In other words, they

have the so-called learning capacity. Thus, it is nature to consider the mechanism

to realize this learning capacity. Neural networks for control systems seem to be

ideal for such mechanisms. In the next section, more details about the current

research efforts in this area will be given.

1.2. Neural Networks for Control Systems

In this section. a brief review and survey is given concerning current works and

expected future research trends in the area of neural networks for control sys-

. terns. The topics to be discussed include the most recent works in this area,

different types of neural controllers and various applications of these controllers.

They are [i] Learning Controllers, [ii] Recurrent Neural Networks for Control Sys-

tems, [iii] Reinforcement Learning Controllers, [iv] Relationship Between Adaptive

Controllers and Neural Controllers, [v] Modeling and Identification, and [vi] Cere-

bellum Model Articulation Controllers. Most of the works focus on applications

of neural networks in known/unknown nonlinear systems with/without noise, for

the purpose of either control or identification. Although this discussion is far from

complete in covering all aspects of the work in this area, it does indeed include
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the major trends at the current time. In what follows, we shall discuss different

to p ics separately.

Learning Controller

Most recently, Hoskins et al [36] presented an iterative constrained inversion tech-

nique to find the control inputs to a plant. Although the nature of their work

is similar to the work in [26], several advantages are observed in [36]. Fir'-t. the

proposed controller responds on-line to changes in the plant dynamics. More in-

terestingly, the proposed controller is applied to generate a neural-network-based

model reference adaptive controller (NN-MRAC), which is used to control the

spring-mass-damper system in which the position respon' "'- reference com-

mand is the same as a target controller. Second, by removing i dral network

from the direct feedback path and replacing direct feedback with an estimate and

optimization, Hoskins is also the first to attempt to consider the analytical treat-

meat of the 'nability of the closed-loop system, which is imp3rtant but has no

mature solution in the current literature. Third, he also considered the issue of

"Smooth Control". "Smooth control" is generally required in some applications.

That is, the control value computed at the current step should roI t vary too mitch

from the control value at a previous step. This is particularly 1ru- in ro0ot ('out rol

probl)lenms. For the redutndanit robot, control plrblen. onel' reqlir(u tetlllt is to ;voi~l

abrupt changes of the gesture in response to the slow end-effect 1ovelient of t he

arm. This requirement is not satisfied in previous works applying eural networks

for the inverse kinematics problems. Although a two-stage learnin strategy may

be an answer to this problem, the works by Hoskins and his coworkers did show

an advantage in this regard.



12

Reinforcement Learning

Reinforcement learning is one of the major neural network approaches to learning

control [43]. Although these methods originated from studies of animal learning

and in early learning control works [.58], they have now been an active area of

research in neural networks and machine learning. In [43], Sutton, Barto and

Williams explained these methods as a synthesis of dynamic programming and

stochastic approximation methods and focused their discussion on the Q-learning

method which was originally presented in [94] by Watkins. An active-critic learn-

ing system contains two distinct subsystems: one to estimate the long-term utility

for each state and another to learn to choose the optimal action in each state.

A Q-learning system maintains estimates of utilities for all state-action pairs and

makes use of those estimates to select actions. They viewed these methods as

an example of a direct adaptive optimal control algorithm, i.e. as an on-line

Dynamic Programming method and a computationally inexpensive approach to

.direct adaptive optimal control, which determines the control without first form-

ing a system model.

Recurrent Neural Networks for Control Systems

Also recently. Nikolaou et al [73, 74] published their research for identifying and

modeling a chemical process. In their work, a recurrent neural network consisting

of dynamic neurons whose behavior is governed by the following set of differential

equations

dx, Xi Fi(Ej wizjx) +u
"t -T + T +s' (1.1)

T Ti .
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where i = 1, 2 .... n, is used to model chemical processes with severe nonlinearity.

After the network has been said to approximate the process well enough. a non-

linear controller based on the works of Isidori [381 is used to control the chemical

process so that the resulting system is linear, and thus. various synthesis methods

for linear systems can be used for the purpose of control. Their approach has

been shown to be successful by applying the network to a model and identifying

a continuously stirred reactor (CSTR).

Although their work still falls into the category of identifying and modeling

a system (process) utilizing the interpolation property of a neural network, one

of the unique features of their work lies in using the internal information of the

neural networks, namely, using the states of neurons to construct the nonlinear

controller. This approach reveals a new aspect of the work in the area for neural

networks for control: how to efficiently and effectively make use of the intelligence

of the neural networks themselves for control systems or how to utilize the internal

information of the network, instead of viewing the network as generic mapping, so

that the memory capacity and learning capacity of neural networks can be more

fully utilized.

It turns out that, in the current literature on neural networks for control sys-

tems, very few people put an emphasis on this point of view. A tremendous

amount of work has been done using feedforward neural networks as generic map-

pings, and then demonstrating that such a mapping, now replaced by the fancier

name "neural networks", worked fine for some particular problems [8, 20, 70].

Typical work has been in the inverse kinematics problems [30, 65]. If the plant is

known a priori, teaching the inverse dynamics of a plant to a feedforward neural

network appears easier since the input-output behavior of the plant can be utilized
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as teaching signals. However, in contrast to the inverse kinematics problem. in

most of constrained control applications. the functional expression of the forward

mapping o is generally unknown. In that case, a two-stage learning strategy has

been proposed in [21. 42. 46. 70]. In the two-stage learning Atrategy. two neural

networks are used. One is trained to learn the forward mapping or dynamics of a

nonlinear system. The other one is trained as a neural controller. The approach

seems promising for this kind of problem.

Therefore, the works by Nikolaou et al [73, 74] have offered a unique approach

in this direction.

Relationship between Adaptive Controllers and Neural Controllers

There is a common point between well-developed Adaptive Controllers and Neu-

ral Controllers: adjusting their parameters cn-line or recussively. Thus, in many

cases, neural controllers are very closely related to adaptive controllers. Due to

this reason, it is natural to consider neural controllers and adaptive controllers to-

gether and explore their relationship. Among researchers working in this particu-

lar area are Narendra[68, 69], Hoskins [36], Chen [14], Karakasoglu [451, Guha [31],

Bialasiewicz [11], and Sztipanovits [89]. Narendra explored how well-established

adaptive identification and control techniques can be applied to the analysis and

synthesis of dynamic systems, which contain neural networks as subsystems. Dif- %

ferent combinations of neural networks and linear systems are considered as mod-

els for identification and adaptive control. Detailed analysis and discussion about

those issues are given by him and Parthasarathy in [69]. Chen [14] used a dif-

ferent approach to neural networks for self-tuning control systems. Two neural

networks are used for approximating the nonlinear terms of a NARMAX model.

The weights were adjusted such that the error between the output of the actual

? ' .... ' 4 ,*j "
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plant and the output of the neural network, and the error of the output signal of

the plant and the predefined signal tend to be minimized.

Unlike a self-tuning control scheme which usually requires a priori information

such as process model order. deadtime, and disturbance characteristics as well as

the assumption of linearity of process. a neural controller has the advantage that

it usually does not require a priori information about the process to be controlled.

Comparisons have been made between the two schemes in [14, 48. 50. 91]. and

attempts have been made to combine techniques in these two areas [36, 481.

Modeling and Identification

There are many neural networks applications for modeling and identifying non-

linear systems [1, 15, 28, 51, 74, 85, 86). Most of the work on neural networks for

identification and modeling has been in using the property of universal approx-

imation of feedforward networks (e.g., [16, 35, 88, 98]). A typical scheme is to

use the error between the output of the network and the output of the unknown

system to update the connection weights of the network at each step. Various

optimization methods may be employed to reduce the output error by adjusting

tLe interconnection weights. Among them are the gradient descent algorithm.

the conjugate gradient algorithm and Davidson's algorithm. Depending on how
the weights are updated. there are two different schemes for training the neural

networks: Pattern Learning [78. 97] and Batch Learning [32, 96]. Pattern learn-

ing is the method in which the weights of the network are adapted immediately

after each pattern is fed in. The other method, however, takes all the data as

a whole batch, and the network is not updated until the entire batch of data is

processed. Qin et al [75] discussed the relationship between Pattern Learning and

Batch Learning for dynamic system identification. Four basic learning methods

- .,. '!!..
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have been used for their work, depending on the sclemes of tne ,ivstem i4l.ntifi-

cation using neural networks. In [69]. Narendra and Parthasarathy discussed the

use of neural networks for dynamical system identification and control. Gener-

alized Neural Networks have been proposed, which are various combinations of

linear dynamic systems and feedforward networks. Chen et al [15] have developed

a prediction error algorithm for system identification, in which the networks are

primarily used as universal approximations for nonlinear systems.

A unique approach has been employed by Specht in [85]. A one-pass neural

network learning algorithm similar to [84] has been used * estimate continu-

ous variables. Depending on the variables used. the networks can be utilized for

prediction, modeling, mapping, and interpolation, or as a controller. Specht dis-

cussed the memory-based network that provides estimates of continuous variable",

and converges to the underlying (linear or nonlinear) regression surface. This net-

work, called General Regression Neural Network (GRNN), is a one-pass learning

algorithm with a highly parallel structure. Thus, the network features fast learn-

ing that does not require an iterative procedure and a highly parallel structure.

Among the advantages of GRNN, the network --learns" in one pass through the

data and can generalize from examples as soon as they are stored.

Although most of the work in this direction is based on the property of univer-

sal approximation of feedforward neural networks, several specific neural network

architectures have been used: [i] Feedforward Neural Networks (e.g., [1, 15, 51]):;

[ii] GRNN [85]; and [iii] Recurrent Neural Networks (e.g., [74]). Different archi-

tectures of neural networks find their use for various purposes of applications. For

example, the neural networks proposed by Nikolaou et al have the advantage that

S . .. . . :.p -! , . ... :•"\ • . -- : . 4, ' " ". .. ' " i" \ .
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the internal variables can be readily used for constructing a linearizing controller

such that the oCerall sssteni is linearized.

Likewise. the neural network approach for identifying and modeling nonlinear -,

systems has the advantage that no a priori information about the model structure

is needed. Important works for modeling and identification using neural networks

can Ibe also found in [[93. 971.

Cerebellum Model Articulation Controller (CMAC)

Another type of neural network for control systems which is worthy of mention-

ing is the so-called Cerebellum Model Articulation Controllers (CMACs) [67].

It was invented in 1975 by James Albus [21, then with the National Bureau of

Standards. Albus's scheme w,-s based on a model of human memory and human

neuromuscular-control principles. The term Cerebellum Model Articulation Con-

troller, or CMAC, is often interpreted to mean Cerebellar Arithmetic Computer.

CMACs were originally developed for robot control, and they have been popular-

ized by a group at the robotics laboratory of electrical and computer engineering

at the Upiversity of New Hampshire under the direction of W. Thomas Miller III.

C.MACs enjoy the reputation of having a much faster training time (several

orders of i1agnitude) than Feedforward Neural Networks (FFNNs) trained by

backpropagation [13], yet give the same performance as FFNNs. This property is

particularly useful for real-time learning and control problems, e.g. in an adap-

tive flight-control system. CMAC neural networks are aiso capable of effectively

organizing and implementing a multi-dimensional function approximation in a

computationally efficient manner using traditional computing architectures.

/!
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A unique approach to neural network controller design has been employed by

Kraft and Campagna [50] to study the performance of this type of controller in

a nonlinear system corrupted with noise. The basic idea behind their work is to

generate an approximation to a characteristic system surface from input-output

measurements and then use the surface as feedforward information to calculate

the appropriate control signal. The characteristic system surface is. in fact. the

system equation representing the known/unknown plant to be controlled. If the

values of the system parameters were known, the surface could be precalculated N
and stored in memory. Then, given the control objective (i.e. the desired position

in memory). it would be possible to look up in memory the correct control signal.

When the system parameters are unknown, the surface must be "learned" from

input-output data in real time. The controller, similar to the work of Miller [661,

uses a memory update algorithm which updates the values of a group of memory

locations near a selected memory cell during each control cycle, using the concept

of generalization.

Kraft and Campagna [50] compared this type of neural network controller

with two traditional adaptive control systems: Self-tuining Regulator and Model

Reference Adaptive Controllers (.MRACs) in a study of the behavior of a first-

order system with/withoe t nonlinearity, presented with/without noise. Results

showed that the CMAC nreural controller performed equally well in the presence

of noise, and worked extr mely well for a nonlinear system, compared with the

two traditional adaptive co trollers. Although, unlike MIRACs, this controller has

no guarantee for stability a~ alysis, implementation speed comparisons favored the

neural network approach because the control signal can be generated virtually as a

table look-up procedure. Moreover, with the neural network controller approach,

no a priori information about the system to be controlled is needed. Thus, the

-.. .1 • -... •... -•" .. -''. ..;1" . .... .
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neural network controller is suitable for a wide class of nonlinear systems. Above

all, their results indeed reveal some interesting aspects of neural network approach

for control systems.

More recently, using B-Spline receptive field functions in conjunction with

more genera CMAC weight addressing. Lane et al [52] developed higher-order

CMAC neural networks that can learn both functions and function derivatives.

The number of weights addressed in computing a network output grow expo-

nentially with the number of input dimensions. Back-propagation BMACs with

higher-order reception field functions on only selected network inputs and Spline-

Net network architectures were proposed as potential solutions to problems of

more modest size, producing piecewise linear and additive function approxima-

tions.

1.3. Organization of the Dissertation

The purpose of this study is to model and to analyze control systems aided by

neural networks. The approaches attempt to explore use of the features of parallel

architecture in control systems. It is organized into five chapters.

The second chapter is a study in modeling control systems using neural net-

works which have a highly parallel structure and are capable of learning and Z

storing information. The study is in the spirit of fully utilizing the intelligence

of the networks and the pattern of processing information in parallel inside the

networks. We go beyond using the universal approximation property of neural

networks, and also consider the internal state information of the recurrent neural

networks so that a control system can be modeled using this highly parallel struc-

ture of computation mechanism. Based on a new paradigm of neural networks

- . --... " .: . ,..4 .: 9 ..
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consisting of Neurons W\ith Local Memory (NLMs). the representation of a control

system by neural networks is discussed. Using this representation. the basic is6ues

of complt e rontrollabilitv and observability for the system are addressed. A sep-

aration principle of learning and control is presented for NNLM. The result shows

that the weights of the network will not affect its dynamics. The principle may

be utilized to prespecify the steady state properties of the system. Modeled by

NNLM. the resulting system is a typical nonlinear one that. through mathematical

analysis, can be shown to be locally linearizable via a regular static feedback and

a nonlinear coordinate transformation. Although theorectical results in Chapter

2 are not directly used in Chapter 3. they do have potential applications for the

differential game problems. For example, pursuit-evasion games can be modeled

by NNLMs while controllers can then be designed using various techniques.

The third chapter of the dissertation is to develop another new paradigm and

tools for applying neural network techniques in traditional differential game prob-

lems. During the past few years, attempts have been made to utilize the powerful

qualitative reasoning and heuristic search capacities in the area of artificial intelli- --

gence to overcome the difficulties of applying differential game theory in practical

problems. such as cumbersome computations [77. 82. 95]. A configuration, based

on the paradigm of Semantic Control. is proposed. It can be used to derive two

paradigms of differential games with neural networks. Two neural networks are

used in each of these two settings. One network is called the neural-identifier

which is used to identify the control strategy of the opposing player. The other

one is the neural-controller which, taking the estimate of the control of the other

player, outputs the real control value for its own player. The issue of existence

of solution is discussed. To demonstrate the effectiveness of the method, a sim-

ulation experiment is carried out and studied for a pursuit-evasion problem. In

- ... -'k • - ,• • -.
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this chapter, a learning control algorithm is developed. The algorithm can be

used to evaluated the weights of a neural controller in the paradigms proposed in

the chapter or in other control systems. Using the learning control algorithm, we /

study the aircraft control problem in the presence of windshear.

The fourth chapter is a study of optimal control and optimization problems

in the Layered Defense Project. The Layered Defense Project is a cooperative

effort between the Center for Optimization and Semantic Control at Washington

University and the Electronics and Space Corporation. Based on the semantic

control theory, the project is to model and study a class of pursuit-evasion game

problems. The third part of this dissertation discusses the optimal control prob-

lems arising from the project. Classical line-of-sight coordinates are employed to

model the game situation. Based on a similar study in [18], an optimal control

law was derived for the one-pursuer and one-evader case. A non-derivative opti-

mization method is used for finding the optimal initial costates for the optimal

control law.

The fifth chapter summarizes our work. The main contributions of this disser-

tation are enumerated and future research directions are presented in this chapter.

: /.



2. Neural Networks Approach to Control Systems

This chapter presents new approach to neural networks for control systems. Based •

on a paradigm of neural networks - NNLM - consisting of neurons with local•

menmory, a control system represented by neural networks is dliscussed. With this

representation, the basic issues of complete controllability and observabilitv for

the system are addressed. For the first time, a separation principle of learning and

control is presented for NNLM, and the principle shows that the weights of the

network will not affect its dynamics. Because of thle nonlinearity of the network, it

is natural to consider the issue of linearization around a local equilibrium point.

A detailed and rigorous analysis of the local linearization via a regular static

feedback and a nonlinear coordinate transformation is given in the final section.

2.1. Background

This beginning section will briefly recall three types of neurons commonly used in

feed-forward and recurrent neural networks. They are .McCulIloch -Pitt s neurons.

C',rosslberg s neurons and [Iopfield's neuron~s. The w'ell-knowii .N le(ulluch-lPitt s

neurons, which take the weighted sum of inputs a id give thli out put ThIirough a I

transfer function, are the basic elements in feedforward neural networks. They

have been widely and successfully used, and their structure is well known. Al-

though there are various architectures to connect the neurons (see the structures .•-

in backpropagation networks, Kohonen networks and liopfield networks), the ba-

sic elements - the neurons -- remain the same.
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When he studied the famous dog-saliva-food biological phenomenon. G;ross-

berg proposed a new type of learning rule, known as the Grossberg Learning Law,

as well as a new type of neuron in order to attempt to mathematically formulate

Hebb's law. His approach, in turn, ittempted to explain the classical condition-

ing behaviors discovered by Pavlov. Since we shall not discuss the learning law in

detail, interested readers are referred to [47].

The neurons proposed by Grossberg are not simply of the McCulloch-Pitts

type, as their outputs are described by a different set of equations. Consider a

neuron which has a number of inputs coming from other neurons in the network,

as well as an external input coming from outside the network. The following

equation describes the dynamics of the ith neuron

dyi (t) n
dt = ayi(t) + li(t) + E tvjyj (t) (2.1)

'SI
j#i

where yi(t) is the output of the ith neuron, I,(t) is an external input to the ith

neuron, and w, is the weight connecting the output of the ith neuron to the input

of some other neuron. The difference between the McCulloch-Pitts neurons and

those proposed by Grossberg is clear since "dynamics" are incorporated in each

of the Grossberg neurons. These dynamics are represented by a positive constaiit .

a which controls the decay of the owttput in the absence of any other input. Thus.

a may also be called a forgetting factor. This type of neuron. toget htc; wit ,i

Grossherg's learning law, give a plausible mathematical formulation for Ilebbs

law and thus form a satisfactory connection with Hebb's learning theories.

Later (in 1984), John Hopfield proposed a general structur2 for a continuous

deterministic model. This structure is known as the Hopfield model. A Ilopfield

model is a two-layer network in which the neurons in the hidden laver are fully

N. t / "" - ..

•/, ;_ _ . ! . ...
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connected to each other. The input-output relationship of the ith neuron in the

network. realized by an amplifier, is described by the set of nonlinear dynamic

equations

C' dtj = T-" t,j - - + Ii
d 74

jii

t'i = 01u0) (2.2)

where Ci is the total input capacitance of the amplifier, Tj is the strength of the

connection from the output of the ith amplifier to the input of the ith amplifier.

u, is the input to the ith amplifier, and v2 is the output of the jth amplifier. Also.

r, is a resistance value. Ij is the sigmoidal transfer function of the ith amplifier.

and gi is the sigmoidal transfer function of the ith amplifier, assuming a negligible

response time. A commonly known property of the Hopfield network is that

the state of the network can be attracted to an equilibrium point corresponding

to a local minimum of the energy function and hence the network can be used

to implement a content addressable memory. Based on this property, Hiopfield

networks have been used satisfactorily for traveling salesman problems [33, 34].

for an A/D converter [90], signal decomposition [90], linear programming [90],

and various combinatorial optimization problems [90].

As we shall see in subsequent sections, the neurons introduced below are dilfer-

ent from McCulloch-Pitts neurons. Grossblrg neurons and llopfield neurons. hli

some sense, they are closest to the neurons in the Hopfield model as they can be

viewed as a discrete-time version of the neurons in the Hopfield model. But unlike

those in the Hopfield model, these neurons are used in a feedforward network in

whichý the well-known backpropagation algorithm can be employed to change the

weights. More importantly, they are used here in a novel attempt to represent



7..

25

a control system by a neural network. In fact. the idea of representing the in-

ternal states as a state vector is not new. Hopfield used the same idea when he

used state vector to construct an energy function in his network. He proved, by

using Liapunov stability theory. that the state will eventually converge to a local

equilibrium in state space, which corresponds to a local minimum of the energy

function. The neurons proposed below are used for representing a control system

and are the basic elements for a feedforward network which. unlike the llopfield

network, does not have an equilibrium.

2.2. Neurons with Local Memory (NLM)

The term, Neurons with Local Memory (NLM), comes from the presence of dy-

namics inside each of the neurons we are interested in. The incorporatin.: "i

dynamics inside each neuron is the main distinction between these neurons and

the conventional McCulloch-Pitts neurons. As we shall see below, this type of

neural network facilitates much of the subsequent analysis of neural networks for

control systems. The incorporation of dynamics in each neuron results in the flow

of outputs from neurons even without any inputs. Thus, the NLMs may also be

termed dynamical neurons or active neu rons.

Interestingly. a simiiar idea has been used by Nikolaou (ft al il [73. 7-1] to

identify the dynamics of a continuouisly stirred reactor (CSTR). hi lheir work.

Nikolaou et al used a neural network whose neurons have the following set ofr

differential equations

dx, x& Fi(E, wijxj) uf--1," = T,.+ lor+ Two' (2.:3)

for i = 1, 2, ..., n. Although their Nork has been successful in identifying the

dynamics of CSTR, they have not discussed basic issues of a control system such
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as controllability and observability. In this study, we shall discuss the basic issues

of control systems associated with this type cf neural networks in a more analytical

and systematic way.

A typical representation of an input-output relationship for the conventional

McCulloch-Pitts neurons is written as

Yk= fj(1 1.. uk), kk E Z, (2.1)

where the y's and u's are the outputs and the inputs respectively. Also, Z is the set

of positive integers, the subscript k denotes the time step k, and the superscript

j denotes the jth neuron. A typical form for f' of (2.4) can be written as

?1j

Yk; - ( vjiuk,4), (2.5)
t=1

where sj is a sigmoidal function, and the wij's are the synaptic weights.

A basic structure of an NLM is shown in Figure 2.1, where j denotes the jth

neuron. The quantities y I, ' ... ,n)J are the output and inputs to the neuron

at time step k, respectively. Also. z:- denotes the backshift operator and s71

denotes the inverse of the transfer function for the neuron j.

The output y. of an NLN\ can be written as

Yk s (u~s'YI~.1- ~~i'1 ~) (2.6)
i=1

where aJ is a scalar whose value represents the (Idynainics in neuron j. cJ is anot her

scalar. and the wji's are the weights of connection from other neurons to neuron

j. By setting aJ = 0 and c' = 1, we immediately obtain the conventional input-

output relationship for the McCulloch-Pitts neurons. It follows that the input-

output relationship of a conventional neuron is actually a special case of that of

N LM.
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k

-1

S.

1,jW unj,

Uk k

Figure 2.1: Basic Structure of a NLI

An alternative and more informative input-output representation of an NLXI

can be given by introducing an internal state variable Xk

z I ./

Xk .k-i W.d2k

=k sj(c` 4~), k EZ. (2.7)

from which (2.6) can be derived easily. The system equation (2.7) is -called the

node system. Again setting aj = 0 and c' = un (2.7), we obtain the inpuit-outpit

relationship of a. conventional feNron.

The advantige of the renresemtation (2.7) over the representation (o2.6) i

apparent by introducing the internal state v.ar The system (2.7) actually has the

standard state equation and Output equation familiar to control enigineers. For

convenience, we still adopt the same name, "state equation", for the x equation.

The role of aj in (2.7) is clear from the familiar control theory. For example.

a necessary condition for the node system to be asymptotically stable is that

the ai's lie inside the unit disc in the complex plane. Even though the state.

appaenthy ntrducng te iter al tat a'•. T e sste (27) atualy as he/
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equation in (2.7) is linear and time-invariant. the output equation is nonlinear.

which complicates further analysis. Although we may assume that sJ is linear,

which is the case in part of our following analysis, we shall generally consider sj

to be nonlinear, e.g. a commonly used sigmoidal function.

2.3. Networks with NLMs (NNLM)

Having defined the I.,asic structure for NLM in the previous section, we can niow

construct a neural network whose elements are NLMs. We shall denote the NNL.M .

with m inputs, n hidden nodes and p outputs by Nm,,.p. For simplicity, we onlySI , /

consider the single-input and single-output (SISO, system in this section. The

generalization to the multi-input and iailti-output (MINIO) system is straight-

forward. Meanwhile, the input to the network has generally arbitrary values.

Figure 2.2: General Structure of NNLM
aW2 
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-
i 
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*
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A general structure for NNLNI is shown in Figure 2.2 . The state equations are:

noe : = a 0 x 0-1 + Ilk-.

node 1, node n-2 k 4 =ý kxl 'j
Yk = S2(C 4). i =1. 2. -2.

• •I I- ~ - +In-

node n- I (C- =-)

where the ais are scalars representing tile dynamics of the ith node system., the

'Ile

s are the transfer functions, which are generally sigmnoidal fuinctions. and thle

wij's are the synaptic weights for the path connecting adjacent layers.

Assuming for a moment that the transfer functions SO, S2 and S3 are all linear

and defining the state-variable vector x T by x' T [4,.. Xn- ', wve can represent

the node system in a more concise form by

Xk =AXk-.. + BUk.

=k CXk,(2)

where

(1 0 0 ... 0 0
---- ac•a a1 0 ... 0"0

A =" i;IW1(n-2.)c0
(L

0  0 0 .. a 0
o a0e W21 . I na W22C2a2 ... W=- Cn(x, i 1 2  a. n-,

B nT = n 1C 'V:(n-2)C J

J\.
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C= 0 0 ... 0 c" ,

a = E-? w1 2,C
0
°i.

Equation (2.S) represents a linear state and output equation with the tralnsfer

matrix being a lower-triangular one. By assigning ai(forO < i < n- 1) ill A. we

can alter the dynamics in (2.8). Assuming that a-' a' for i = 0. n-2, we

define the quantity ac as follows

n-2

ac = Wt•a _ . (2.9)
a-I a'

The quantity ac plays a key role in our subsequent discussions. As mentioned in

the begining of this section, Nm,n,p denotes the NNLM with m inputs, n hidden

nodes and p outputs. Based on the analysis on controllability and observability

in the next section, we immediately have the following:

Theorem 2.1 Supposc that

[i] All transfur functions s, arr lincar,

[ii] I',j $ 0 for ,ll i.j.

[iii] c . - 0 ]l, all i.

[iv] a,. # 0 and a., < x.

[v] a' 5, a for, I j.

Then, any strictly proper SISO linear system with real and nonr luatiny ciy•nal-

ues can be realized by NIn_2.1, where the a's are the eigenvalues of Mhe systun.

Proof. Because the system (2.8) is completely controllable and observable (see

theorems 2.2 and 2.3 in the next section), the transfer ft, .n C(.sI - A)-'B



has no pole-zero cancellation b)et weevi its titinierator and denoimilator. Since thle

order of tile denoinn ator polynonti ial k ii. it represents a typical iii hi-t rdhr rat ional

transfer function.
/

Q.E.D.

\We give an example for lhe case it=1. The matrices A and B in this case are

0 1 0 0

A = w c 0a° at 0 0 I Ii1 c"
A ' 12 c

0 a 0 (t2 0 B '12C0

a° 112 1 CI a 11,22C 3 a2

c [o 0 0 0r1.

where a = w 2 jc I wc + wtv2 •c °2co anrd the transfer function is

c3 (b3 s 3 + b2 j
2 + b1s + bo)

(s - a°)(s - al)(s - a2 )(s - a 3 )' (2.10)

atd

b., -ýI o + at((1 + a 2) + E12CCt21t11211 1 2 2 + a' 0 co 1 w.. I O+

h), = I~ 0,ao 2 + ( ,01 + ,1, a 2) (,,
0  + , at•))a(I2 C , 2 w0 -

+,f 44.(1 V,)'(* I !' u )C 2

0) 1-
(bo (I (I I '1 4- a'2 I I C +liI I I. I tll , $4) = -aa ltltll ",4- a a Erll C 12 'U'2'l l'22 - - tlll t~' Otl 'l tt2t -

0) I 2 0 2

El (1 •E I C C, IV 2 1 V .

Thus, by properly choosing I ,, w1 2' w21 *,l.,2, we can realize a Ith Order linear

system. A block diagram for the realization is shown in Figure 2.3.

-'. .
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0
Xk

2 2
Xk k "

Uk zLB •7 . k-I

Xk-I ._

x 3

Figure 2.3: Linear Systern Representation of Order 4

2.4. Controllability and Observability

The basic issues of controllability and observabilitv for the system (2.S) will be

discussed in this section. For the definitions of controllability and observability,

interested readers may refer to [44]. W'Ve have the following: A

Theorem 2.2 Suppose that '

[i] wu' 7 0 for all ij,

[iil c' 5 0 for all i,

[iii] (t,. 1 0 ,l,,d a,( < !c.

"Tb•r,. thr .y.t~in (2.S) is conyphhlly cohrolhnbib)Ic if andi onhly if tj lb M .[l,,i, in-

(ql liti(-s bold

(i 0 a, for ij. i.j 1,2. n- 1. (2.11)

/
!'-

~7/
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Proof: (Sufficiency) \Ve shall prove sufficiency by using the Popov-Belevitch-

Hautus rank test (see [4-1]). Let, A,1 be defined as follows A

s - a° 0 0 ... 0
-w, 1 c~a° s - al 0 ... 0

0 0 2-I 1 2c a 0 s - a ... 0
A, = [sI-A B] =

-- I (n_2)cOa0 0 0 ... s a'- 2

L (1 0 h2I a 2 a 2-2 n-2

0 W11 0

0 WO12C2 .

.00

0 wI(n._2)C°
i 5- an-1  g J

Obviously A1 has rank n if s is not an eigenvalue of A,. For s = a°0 and if a° t ai

for i > 1, multiplying the last coluni by a° and adding it to the 1st column yields

ao 0 0 ... 0 1

0 0

0 a 0 ... 0 w-,c°

0 0 0 ". 0 0l,_)°-

0 -- IU2O(/ -W 22 C2a2 ... (0 - n- (

which has rank n.

For s =(1 a and if a"= a' for sone i. deleting the nth col umin of maltrix At

yields a matrix 1:,:

0 0 0 ... 0 1
-IWIjCO(/o (10 - (a1 0 ... 0 ICU

- 0 0I2C0(/0 0 (a0 - (12 ... 0 W1 2L0

A 3

W'l(n - 2)}c 0C 0 0 ... ao an-2 )-, 122n-2 n-2~

-aOa -- W 2 1 CI aI - W 2 2 c2a2 ... --wt2(n_ 2 )C (I n-2

After elementary transformations are performed on the matrix A3, its last row

'becomes [0, 0, ... 0,., 0, ... , 0]. Then, performing another series of elementary



-I -/ t

transformations on the resulting matrix yields the following

a0  0 ... 0 0 0 ... 0 0

0 a° - a'

0 ... ... a - a 0 ... 0 *A4 ='

o ... ... 0 a° -ai 0 0

S(I -2 0

0 0 ... 0 * 0 0 0

which has rank n.

For s = a(1 < i < n - 2), deleting the nth column of A, yields

a 0 0 ... 0
0 a- al 0 ... 0

: : ai -- ai-1 0

A5 o.
: :0 0

o o ... o 1
0 0 ... 0 I'tIc°

0 11) ." I l(i+1)(.t

ai - ai+l . I(i+2)CU

a i ,n-2

--Vu2iCi i a' 2 (i+l)ci+l i+ a ...1 - 2 (n_.2)C - 2a n-2 (a

After performing a series of elementary transformations, it is not hard to show

that the rank of the matrix is again n.

-.• .. .*. • . .
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For the case s = a n-I, deleting the nth column of A1 and performing one ele-

mentarv transformation on A, yields

an- 0 0 ... 0
0o -1a 0 0 W

A 6 = .

0 0 0 an-1 a n-2 WI(n._.2)C'
0 -V21CIa I--t2 2ca2 .. . 2(n_?)Cn-2a n72

Again, performing another series of elementary transformations on A(6. one obtains

a n-1 0 0 .. 0 1
0 a n'- -- a, 0 " . 0 W IICO

A7 =
0 0 0 . an- 1 - an;2 W (n,..2)Cc
0 0 0 ... 0 d

where d, is

dc. aceaO-1. (2.12)

Therefore, A7 has also rank n.

(Necessity) Necessity is proved by contradiction. Letting a' - a' for some

i 74 j, i, j=l. 2. ... , n-1 yields a matrix A* which has rank less than n.

Q. [.1I).

REMARKS:

It is easy to see from the proof that the condition a = a'(1 < i < n - 1) is allowed.

Thus the system is still co.trollable even for repeated eigenvalues a' = a' for some

i between 1 and n-1. Notice that a,- ai for i = 0.... n-2 is only a sufficient
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condition for the theorem. The following example shows that the assumption may

not be necessary.

Considering a case where n 2. we have the state equations

x0. = a°.r._ + Uk, (2.13)

4 = a _ + wVIIC%7k1, (.4

SI (2.15)

This system is obviously controllable no matter what the values of a° and a1 are.

Thus, letting a° = al = constant, we still have a controllable system.

A similai result regarding the observability of the system is obtained.

Theorem 2.3 Suppose that

[i] wij 0 0 for all ij,

[ii] c' 0 0 for all i,

(iii] ac: 7 0 and ac < oc.

Then, the system (2.8) is complctely observable if and only if the following in-

equalities hold

a' 5 a' for i - j. i.j = 1,2 .... n - 1. (2.16)

Proof: Necessity an,1 siifficiency ,an be proved again lv usin• tIIe IPopov-

Belevitch-Ilautus rank test, namely. Lv checking t lie rank of tile niatrix [Cr (,•I-

A)T]T. Similar arguments lead to the conclusion of this theorem. with the only

difference being that the column transformations are changed to corresponding

row transformations.

Q.E.D.
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REMARK:

The result on observability of the systems holds only under the assumption that

the transfer functions of the node system are all linear.

2.5. Separation of Learning and Control

In this Section. we shall discuss the effects of the weights on the overall per-

formance of the system. In Section 2.3, we showed that some of the entries of

matrices A and B in (2.8) contain the weights of the network. This seems to imply

that the weights could affect the dynamics of the system. However, this turns out

not to be the case. In fact, the transfer function (2.10) tells us a very important

fact that the weights of the network will only affect the numerator of the system

and do not affect the eigenvalues of the system will not be affected. In general,

we have the following !

S~~~d(s; w, a, c) (.7
Transfer Function = .d(11 " (s -ai),,

where w = (wj),,,,, a = (a, ...,I a1 -1), c = (cO,c1, .... cn- 1) and d(s: w, a, c) is

a polynomial of order n-1 whose coefficients are the linear combination of entries

of matrices w. a and c. This property will be formally sta ed as follows:

Property 2.1 Thc dynamics of 1h1w systrm will not br a jt( /,l by clinyinyq hf.

i.cights of the ndiwiork.

-I

Basea on this property and the fact that the NLMs ai extensions of the

McCulloch-Pitts neurons, we obtain the Separation Princi le of Learning and

Control, stated below. The importance of this principle lies in the fact that be-

fore we actually use the system, we can set all a's to be zero. We then train the

- --



network using the backpropagation algorithm with a prespecified training set so

that the network has the desired stationary property. After training is done. the

parameters ai can be resumed and thus the network will function as a normal

system.

SEPARATION PRINCIPLE OF LEARNING AND CONTROL

The training process of an NNLM and the control process after train-

ing can be separated.

2.6. Linearization via Transformation of Coordinates and
Nonlinear Feedback

In Section 2.3, we saw that our representation resulted in a nonlinear discrete-

time system. There are many reasons for linearizing a nonlinear system, and

many publications in the literature [29. 53, 54, 72] discuss this problem. Before

we proceed, let us look at our discrete-time system whose nonlinearity arises from

the nonlinear transfer functions. In general, the transfer functions in input nodes

of a neural network are linear. Thus, the state-space description of our system

has the form

0 0 0

Xk a I= k 
1 

-+ Ilk.
1 _ 1

-1. = jllCOaOxOk1 + al.rk 1 + tLlleCIlk,

n-2 0200 -n-2"- wI(n_2)C 1a Xk._I + a k- + Wl(n-2)CO lk,

n-2
Xn- -= a-k n-1 + si ai( i a + Ci ,licOaOxOk-+ c+i Wlic

0 Uk),
- ai (a000• ),(c k

i= 1
Uk = S3(C"-1 x'•-). (2.1S) ,

4.. . .!'
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The above equations can be written in the following form:

Xk f(Xk-l,Uk), (2.19)

where Xk= (X°,'"l,* k1) and f(xk-luk) (f0(xk_1,Uk),'' ,fn-1(xk-1,Uk))

is a vector of the equations which are defined above.

From the above, we know that the overall system consists of a linear sub-system

cascaded by a nonlinear subsystem together with a nonlinear output equation (see

Figure 2.4 ). This in turn implies that the overall system is a nonlinear one.

It is natural to consider the problem of locally linearizing the above system via

coordinate transformations and nonlinear feedback. In general. not all nonlinear

systems can be so linearized. A necessary and sufficient condition will be given in

Section 2.6.2. Once a linearized system is obtained, it is very easy to implement

a nonlinear control law to have the system track some desired signal.

X0 x0_ s13(.

n-2 xn-.

Function Qx ý Z -

Figure 2.4: Nonlinear System Representation of Order n

2.6.1. Preliminary

We consider a smooth discrete-time nonlinear dynamic system

x+1= f(xk,uk+l), (2.20)
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where xk = (xU, 4,.., k =(it, it`) are smooth local coor-

dinates for the s* te-space M and input space U respectively. Before discussing

feedback linearizability for (2.20), we introduce the notion of a regular static state

feedback. We call a relation

uk+l = a(xk, Vk+l), (2.21)

a regular static state feedback whenever •k(•, vk+I is nonsingular at every point

(Xk, Vk+I). Notice that this implies locally a one-to-one relation between the old

inputs uk+l and the new controls Vk+l. We can now formulate the notion of feed-

back linearizability for (2.20):

Definition 1:

Let (xo, uo) be an equilibrium point for (2.20), i.e. xo = f(xo, uo). The system

(2.20) is feedback linearizable around (xO, uo) if there exists

(a) A coordinate transformation S: V E R- S(V) C RII defined on a neigh-

borhood V of xO with S(xo) = 0;

(b) A regular feedback u = a(x.v) satisfying o(xo,O) = u0 and defined on a

neighborhood V x 0 of (xo. 0) with -(x. v) nonsingular on V x 0.

such that in the new coordinates z = S(x) the closed loop dynai•lis 'Ire linlelar

z(k + 1) = Az(k) + Bv(k), (2.22)

for some matrices A and B.

At this point, let us look at the equilibrium points of our nonlinear system. For

the system (2.20) it is not hard to show that the x*, u" satisfying f(x', u) = x
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have the form

X0. =
1 - aO'

__ 1
X - 1 - a[w1[1c°a~x° + wic 0 l'],

1 n--2 .
-l" 1 -a-

1 
) u 2is 2 (Ca x. + CnWlicOaOrO" + cztl'licOu')]. (2.23)

Therefore, x°0 , x1", ... , X(n-2" are all linear functions of ui but X(f-1)" is not.

2.6.2. Necessary and Sufficient Conditions for Local Linearization via

Transformation of Coordinates and Nonlinear Feedback

In this section, we are going to use Grizzle's necessary and sufficient conditions

[72] to prove that our nonlinear system is locally linearizable to a controllable

linear system. Before we formally give the result in the next section, let us look

at a sequence of distributions given by Grizzle in [72]. This sequence will be

instrumental in the solution of the feedback linearization problem for (2.20).

Let 7r Af x U M-+ l be the canonical projection and K the distribution defined

by

= krf.. (2.21)

where 31 C R', U C Rm and f. is the dual vector space homoinorlhiism ifrom

TM1 x TU to TM.

- ,/ . --I ... ,
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Algorithm 2.1

Assume f. has full rank around (xo. uo).

Step 0: Define the distribution Do in a neighborhood of (xo, uo) in .11 x U by

Do= 7r.-(0), (2.25)

Step i+1: Suppose that around (x0. uo) Di + K is an involutive constant di-

mensional distribution on T(M x U). Then define in a neighborhood of

(xO, uO)

Di = f.(Di), (2.26)

and stop if Di + K is not involutive or constant dimensional. 4

The effectiveness of the above algorithm rests upon the following observation.

Lemma 2.1 Let (xo, uo) be an equilibrium point of (2.20), and assume that f. has

full rank around (xo, no). Let D be an involutire constant dimensional distribution

on Ml x U such that D + K is also involutive and constant dimensional. Then

there exists a neighborhood 0 of (xo, uo) such that f.(Dlo) is an involutiee constant

dimensional di.tribution around .o.-

Based on the above algorithm and lemma. (frizzle [72] states necessary and su Ifi-

cient conditions for locally linearizing a nonlinear svstem to a controllable onC1.

Theorem 2.4 (Grizzle) Consider the discrete-time nonlinear systun ( 2.20),

about the equilibrium point (Xo, Uo). The system (2.20) is linearizable around

(xo, uo) to a controllable linear system if and only if Algorithm 2. 1 applicd to the

system (2.20) gives distributions Do, ... , D, such that dim(DJ) = n + m.

N I
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The proof of the above lemma and theorem can be found in [721. In the next

section. we are going to show that our nonlinear system satisfies the conditions of

the above theorem and thus the system i3 locally linearzable.

2.6.3. Main Result

Now. let us consider our nonlinear system (2.20) in which f(x. u) has the form

a°x 0 + u
willca°z0 + aYxI + wl~c°u

f(x,u )= ,(2.27)

1V(n-2)cOOx
0 + an-2Xn- 2 + ?Ul(n-2)C01Lan- X n-1 + Fn-'2- .2is2(ciaixi + c i w2ic 0aOX° + cilvlic°u) ,:.;

where x = (x0, x.... ,xn-1 ) and u is a scalar. Before we present the main theo-

rem, we shall stat and prove some lemmas, which will be used later.

Lemma 2.2 Consider the nonlinear system (2.20) and the nonlinear function

f(x.u) of (2.27). If a' 0 0 for 0 < i < n - 1, then f. has full rank around the.

equilibrium point (x*, u*).

Proof: By noting that f .1! x U - .1I is given by (2.27) , we can evaluate

T.11 x TU --+ TJI by considering the natural basis (in TN and

in TU, where 31 E R', U E R, and TM and TU are the tangent spaces for N[

and U respectively. Let Z1, Z2, Zn be the basis in the image of f. Then,( -a
a~tau Z.

.( .,. /-!• •
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where A = (aj). given by uj= i, j . 0, 1, n-i and a ,k 'k=0 1.

n-i.

Thus,

a 0  t/'llc~a
0  

... 'l(,~n_ 2 )cOa "n- 2 wtV2is1s(.)cit'lic
0 aO

o= a2
0 a ... 0 w 2 lS2 (.)c a -

0 • ... 0 E,-2

1 U11 C I '" Wl(n-2)C Z =1 11'2i-"2(.)ci)i C0

Since a' 7 0 for 0 < i < n - 1, rank(A) = n and thus f. has full rank around

(x-, u).

Q.E.D.

Lemma 2.3 Let the conditions zn Lemma 2.2 be satisfied. Let D be a subspace

in TM x TU. Then

dim(f.(D)) dim(D) if dim(D) < n,{ n if dim(D) = n+l.

Proof: Case di) din(D) <n:

Suppose that di{n( D) = p < n and let I".) ....... VP be the h&4is in 1). "lDi.

without loss of g nerality, we have
t3

y2 ax,
= P :(2.2S)1 i o

Y jj -

OU\.. •"
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where P E RPx(n+') and rank(P) = p. Then.

f 2 =Pf. =PAar Z2 = 1 Z V2 "-

af42)P f ___Z I'.V'

5-u-

To prove that f.(D) = span(I,... '), it sufflices to show that rank( P)=p. In-

deed, the fact that rank(P)=p n, and rank(A) n implies that rank(P)=p.

Thus. dim(f.(D)) = dim (D).

Case(ii) dim(D) = n+l:

Then (2.28•) still holds. but in this case. P E H("+1)x("+1) and rank(P) =n+l. The

fact that rank(P) follows from Sylves'ter's inequality on the rank of the product of

two matrices and the rank inequality for matrices A E R"Xfl, B E Rn"X(,n < n)

rank(A) + rank(B) - n < rank(AB). (2.29)

Therefore, dim(f.(D))=n.

/
Q. E.D./

Leinima 2.4 bt d(Iof0f tI/ ca((nir(l proj( tioi frol .11 U! ono .11 yii, 1.

by :(.ru) = .r, and 10 Q b, a xu.,tt of T.11 ,ill, dini,(Q)=p < n. TI/ n
dinzfl ;' (QO))=p+1l. : -, ,.-"

Proof: Let YI ... I', be a basis in Q. Then any vector field in Q can be, repre-

sented by '=• ai'l, that is,

'~1 "NI ..25

___ '7.,' -
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(a1 .a• , O...,a, O) "
a °,°0 0) '

0

0

But

1i

0 0 P3

0 0o
where P1 E RP"•, P2 E RPxl, P3 E I?("+'-P)"' and rank(P 1)=p, rank(l 2)=1.

Let -. ]T be a basis in TM x TU, then

rr. a = I,

where I is an identity matrix.

Tius,

•-- (a/ (1" 0I a -- (1 H l ,•

a n I "a,')u
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= a Z (2.30)

and

Y,

Ox, 07

0

So rank(P) =p+ implies that

-I

0

0

has dimension p+l or dim(,"(Q))=p+l.

Q.E.D.

Theorem 2.5 Considcr thtc discrtct-tibn nonlinrar sy.4mn (2.20) aboat /t, vqii-

Ilhiriitn point (x". u'). If a' # 0 for 0 < i < - 1. thh n thIf .,'!l.in sm IIr lin(•Ib

a0roundU (.r, u1) to a con Irolla b/c liii (ar sys.( im.

Proof:

Step 1. Using lemma 2.2, we see that f. has full rank around the equilibrium

(x', u'). Therefore, we can apply algorithm 6.1 to compute Di.

/,. •_• _- •• i . I . .,7

/.



Let K ker f. Note that f. TM x TU - TM., and T.11 x TU C RV x R

and T.11 C R . Therefore f.(ii,.., ,) =i ,.-. )A. The equality

&•2..., a,, a) 0 implies that

(a ...... an,,a)A =0. (2.31)

/"/

Let
1 -- -t e ... t~(,,_ 2 )C0 -- 2 n.-2 tl~i. 2(. )C~ ijlcO //

0 1 ... 0 0

0 0 ... 1 0
o 0 00 1

and

a° 0 ... 0 0
0 a1  ... 0 tL2l8'(.)C1(Ij

A* =AT = : : .

0 0 0 an-1
1 0 ... 0 0

Now right-multiplying (2.31) by T yields:

a. n a)A'0,

or

(,t•+.a0it ,]T 2  ) 0.

from which we Conclude that a" .... = = 0. B•ut i= -,

So.

K = span(a• - a . '- ,,

= span(Y)

where 1' o -a' a and dim(K)=1.ax- C)r --
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Step 2: Let Do r r-'1(0). Then we have Do = span(-) and dim(Do)=1 from

Lemma 2.4. Let Di+j = 7rnf.(Dj) for 0 :5 i < n.

Suppose now dim(Di)=p and X 1,'", Xp are a basis for Di. Then we have

X 2 :"

a

In

where P E RP'(n+l). Thus, [X1, . ,X , Y] is a basis for Di + K, and

., P:

where p=[1 0 0 ... 0 -a 0]. Obviously, [X, Xj] = 0 for i 5 j and

[Xi, fl]=0 for all i. Therefore, Di + K is involutive and has constant dimension.

Repeatedly applying Lemma 2.2 and Lemma 2.3 on Di, and using induction on

i, we obtain a Dn whose dimension is n+1. It follows from Grizzle's necessary

and sufficient condition that the nonlinear system is linearizable to a controllable

linear system.

Q.E.D.

2.7. Discussion

The lack of rigorous mathematical representation of control systems in current

paradigms of feedforward and recurrent neural networks is a drawback to the de-

velopment of research on neural networks for control. The feedforward networks

are known to work as a mapping between two information domains. Most of the

current research in neural networks for control and related publications discuss
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using this type of neural network to "learn" a model or a controller, wvhich is

usually either highly nonlinear or hard to implement. The results published show

that these approaches are satisfactory in some cases. However, there is little de-

velopment to attempt to relate the theory of classical and modern control systems

to this type of neural network. Neural networks of this type are always treated a s

a "Black Box" and thus there is no direct contact with the "internal" information

of the box. A classical linear control system, which may also be called a "Black

Box", can be represented by a transfer function in the linear case, and thus the

input-output performance can be studied thoroughly. This work exploits the "in-

ternal information" of the network and attempts to represent the control systems

in terms of this information. Therefore, the network itself is not only a control

system, but it is also capable of learning. In this case, the paradigm presented

here may be viewed as an extension of current recurrent networks.

As quoted in [93] by Williams: "While much of the recent emphasis in the

field has been a multilayer network having no feedback connections, it is likely

that the use of recurrently connected networks will be of particular importance

for applications to the control of dynamical systems". Indeed, because of the

incorporation of feedback or dynamics inside the netwvorks, the recurrent networks--

show great promise for the future of research on neural networks for the purpose of

control. The property that the Hopfield net has a Constant Addressable Memory'

provides a way for implementing many practical problems; e.g., traveling salesman

problems. Another particular type of recurrent network, a settling network, has

also been widely recognized as important in connectionist circles. Such a network

converges to a stable state from any starting state. The final state of such a

network can be viewed as the solution to a certain constraint -sat isfact ion- type

of search, as in relaxation labeling, or it might be viewed as a retrieved item
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from a content-addressable-associative memory. Despite this, the ambiguity of

information stored in networks hinders the networks direct use of the information.

and thus there is very limited use for this type of network for control purposes. 7
Our attempt is to mathematically formulate the control systems inside the

neural networks. We can easily represent each linear SISO system in the neural

network, by introducing a small feedback loop INSIDE each neuron, rather than

a feedback connection. For this paradigm of neural networks, we can directly use

the internal states to construct a feedback control law. What is more important

is that'a network of this type is itself a system, but not an unknown "Black

Box". Thus its input-output performance can be studied just as in the case of the

classical control system. Based on this observation, many conventional synthesis

methods can be directly borrowed to design the system. The stationary property

of the system can be preassigned by means of learning, a unique feature that the

classical control system does not have.

Of course, this is only a first step in this direction of research. There are still

many interesting open problems, such as:

1. Designing a controller which is also a neural network of the same structure,

and then applying the controller in the system modelled by the neural net-

works discussed in this chapter. It is interesting to study this type of mixed -

network and to explore its properties.

2. Carrying out research in the case of multi-variable system. It is straightfor-

ward to extend current results to a multi-input and multi-output system.

However, extension of the results of linearizability is not trivial and requires

further study.
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3. Considering how to construct the training set. By the Separation Principle

of Learning and Control, the systems of this chapter can be regarded as

networks when the dynamic parameters are set to zero. Thus they have

the capacity of learning. The construction of a training set is an interesting

problem. Also by this same Principle, it is not hard to show that it is possible

to construct a training set such that after the network has learned, it has

the desired stationary properties. Thus, the problem of how to construct a

training set so that Lhe trained system has the desired stationary property

needs to be investigated.

4. Considering the applications of results in this chapter to the differential

game problems. Differential game problems can be modeled by an NNL\I,

and control strategy for each player can be obtained using various controller

design techniques. In this case, the NNLM used for modeling the differential

game has at least two inputs, since most differential games have at least two

players. This application is very interesting and is worthy of further study.

Although results in this chapter will not be directly used in the next chapter,

they do have potential applications for such kinds of problems. For example,

by modeling a differential game problem using an NNLM and by designing

controllers using additional neural networks without local dynamics, we ob-

tain a network consisting of several small neural networks. St udyihg such a

network which consists of several small neural networks is also interesting.

We hope that results of this kind will appear in the near future.

/I
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3. Differential Games with Neural Networks

Rufus Isaacs [40] first looked into the theory of modeling tactical encounters in

what he termed "Differential Games" in his seminal Rand report [39]. Isaacs

assumed a differential model for aircraft dynamics. He also assumed that the roles

of pursuer and evader are fixed for the duration of an encounter. Only the pursuer

was assumed to have weapon capabilities that could be modeled by a hyper-surface

in the state space. For more than two decades since Isaacs' pioneering work. there

have been many publications in the literature about this subject. However, the

problems studied in the literature were different from that studied by Isaac in

his original report. There are many practical systems which can be modeled by

differential game problems. For example, cooperative and non-cooperative games

are typical differential games in the area of economic systems. Up to now. it is

commonly agreed upon that there has been a strong theoretical foundation in the

field of differential games.

However, there are some reasons why differential games have not had widespread

use in air combat whose arena is one of the most comnplex d(lnamic sx'stiiis. Iii

fact. the applications of conventional differenrtial game t heory ill iuaay practical

problems are limited because of the following reasons. First, the classical solution

of a differential game is based on simultaneous backwards integration of the state

and adjoint equations, starting at the target set (terminal manifold) of thegame.

in order to fill the entire game space by the ensemble of optimal trajectories. The

backwards integration is a rather direct operation as long as no singular surface

of the game exists. In a simple game, with no more than two state variables, the

' ,



541

existence of the singular surfac.; can be easily visualized. For a differential game

of three independent state variables the same process becomes very cumbersome.

and for dynamic models of higher dimension, it is virtually impossible. Second.

at the other end, the numerical solution of a two-point boundary value problem

associated with the differential game satisfies only the necessary conditions of

optimality, and it cannot identify the singular surfaces of the game and has no

tool to verify the sufficiency conditions of the game solution. Third, as illustrated

by an example in [8i], Shinar indicates that the frame of classical cdfferential

g ame theory is rather limited to accommodate even relatively simple models of a

"real-world" dynamic conflict. To be more exact, the assumption that the roles

of pursuer and evader are fixed during an encounter is not reasonable since all

.participants in an encounter have weapon systems that can be modeled by a con-

* tinuous probabilistic function. Fourth, 'in future 'ir combat most engragements

will start at rather long (beyond visual) ranges. Thus, the initial conditions of

the above described two-target game are generally in the "draw" zone. Therefore,

the only guaranteed outcome of such a non-cooperative game is a "draw". This

result, which denies the very essence of an air-to-air combat and consequently

the justification of the high cost of advanced aircraft and missile development, is

clearly unacceptable from an operational point of view.

As a consequence of the difficulties outlined in the previous paragraph. one is

strongly tempted to search for an alternative approach to the analysis of dynamic

conflicts. A priori, Artificial Intelligence seems to represent such an alternative.

An interesting concept introduced in r77] is the OODA loop - Observe, Orient,

Decide and Act - in a cyclical maneuver. The OODA concept is based on the

fact that in current classical air combat at short range, pilots have been using

their eyes as sensors and their brains to integrate the visual and sensory-supplied



information necessary to play the game. Although the OODA loop undoubtedly

plays an important role in air combat pilotage, the limitations are obviously those

of human ability in the supersonic combat envi ronments. Humans are character-

ized by a limited processing rate - two events taking place in less than about one

tenth of a second will generally be perceived as a single event. Another limith-

tion concerning the processing rate involves the fact that an activity of integrated

percepts, decision and motor action is performed. To overcome these difficul-

ties, Rodin et al proposed in [77] an Artificial Intelligence approach to designing

an operational on-board system, called "Tactical Decision Aid Expert Systems Y

(TDAES)", to support pilots in tactical decision making processes. The Expert

System generated an initial flight and action plan (initial mission).- The optimal

plan gets reevaluated and possibly changed every time when an unforeseen event

takes place. The system employs a basic set of pursuit-evasion algorithms for

suboptimal mission generation.

In their pioneering wvork, Rodin et al proposed in [77] the use of artificial intel-

ligence methodology in air combat games. The work was based on the semantic

control- paradigm proposed in [76] by Rodin. In this paradigm,, a control problem

is broken into three blocks. Their functions, when applied to a-situation governed*

by differential games (for instance), are as follows:/

(i) Identifier: Identifier block identifies the differential game, parameters and

role that the aircraft should assume in order to destroy an assigned target.

(ii) Goal Selector: The Goal Selector solves the differential game chosen by

the Identifier block. The results are the optimal trajectories, barriers and

controls.
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(iii) Adaptor: The Adaptor determines the controls that causes the aircraft to

"~best" follow the optimal trajectory determined by the Goal Selector.

In [9-5]. XVeil used Artificial Intelligence methodologies to splice the solutions in

low order one target models to-ether in a sub-optimal fashion that will be useful

in air combat. He explored the characteristics of a self modifying system. Among

the methodologies he used. the artificial neural net approach is impressive. Several

neural nets are in his approach. One net is the classification net that determines

which differential game from the knowledge base will be chosen'along with some

of the criteria that might be used to make the decision. Once a differential game

is chosen, another neural net is assigned to the game so that it can determine

the parametrizations of the game. The method of generating the training set for

each net is unique in the sense that, instead of generating the training set off-line

by using traditional methods, the training process is done by closing the loop

simulation forward and adjusting the weights by propagating errors backward in

time. Training each individual net is relatively independent.

Based on the above semantic control paradigm, we present here a new approach

to using neural networks in differential game problems. The approach reflects the

fundamental phases in real-life conflicts. Instead of building uip a knowledge base.

we implement the neural nets in the Identifier and Adaptor blocks of the semantic

control paradigm so that the approach is more general and is capable of working

on-line during an entire encounter. Generating training sets for these two neural

.nets is different from other approaches [49. 9-5] in the sense that the nets in our

approach do not learn the optimal trajectories generated by optimal controls but

learn the mapping between two information regions.



This chapter first discusses the fundamental phases' in real-life conflicts and

gives a general configuration summarizing these phases. The configuration pro-

vides a basis for further analysis and the paradigm for differential games with

neural networks. In Section 3.2. two paradigms of differential games with neu-

ral networks are given with emphasis on one player and two players respectively.

These paradigms represent semantic control. One contribution of this approach

is the Identifier, which takes the environmental information and outputs an esti-

mate of the opponent's strategy. In Section 3.3, the INTERCHANGEABILITY

conditions will be discussed. Interchangeability is it basic assumption throughout

this study. In Section 3.4, several algorithms with the same basic frame will b~e

given. A detailed discussion of each stage and of the implementation of the algo-

rithms are also given. In Section 3.5. a detailed study of a pursuit-evasion game

problem will be given. The simulation results are quite satisfactory. Discussion

of the simulation results with the algorithms of different paradigms, direction of

further research on this topic. and the conclusions will be given as well.

3.1. Motivation

In real-time life conflicts, the actions of two players usually consist of three phases:

discovering the opponent, finding what this opponent is doing. and making a

decision. Upon finding the opponent. the pilot will first identify his maneuver.

and then react accordingl to his opponent's perceived action. Sometimes, it is hard

to distinguish between phases because some phases may last very short periods.

These three phases are the same in all air combat problems, though the last two

stages may repeat for the successive time intervals, e.g. the pilot may change



/

58

from evasion to pursuit upon finding that the action of his opponent changes

from attack to withdrawal.

The above process is similar to the OODAL loop outlined in the last section.

and these phases can be formally stated as the following configuration. We assume

that there are two players engaged during the entire encounter of the game. Each

player employs the three phases in the process of making a control decision. We

only give the phases for one player because the phases for the other player are the

same. For each player, each individual phase may start at a different instant.

General Configuration of Phases in Real-life Conflicts:

Phase 1: Discovery of the opponent

Phase 2: Identification of the actions of this opponent

Phase 3: Making decision for next action according to this opponent's

perceived strategy

Phase 1 is self-explanatory. Immediately after finding his opponent, the player

identifies an approximation to the strategy arH maneuver and obtains informa-

tion about the range, bearing, heading and speed of his opponent. Gathering this

information is accomplished in phase 2. In our discussion, examples of strate-

gies may be pursuit, evasion, or disengage. Typicai examples of maneuvers may

be found in [57. 80]. Techniques used for identifying the tactical air combat

maneuvers are in the forms of decisioo-making, scheduling, and control systems

[10, 22. 37, 64]. Recent works in using neural networks in diverse ways for the

classification of underwater sonar targets [27] and recognition of radar targets [711

show great promise in the area of maneuver identification. The information .bout

the range, bearing, heading and speed of his opponent is generally gathered by

means of mathematical devices. Many times, this information is crucia* to the

S .1
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player's control decision making. In phase 3, the player reacts according to his

opponents perceived action. His strategies might be pursuit. evasion, or disen-,

gage. Generally speaking, his strategy is some type of generic mapping of his

opponent's strategy. which in some cases may be a continuous/discrete-time type

of mathematical functions. In light of the above, his strategy could be I1'I t

evasion if his opponent is pursuing:
strategy pursuit if his enemy is escaping and a chance exists:

observation if both sides choose to be peaceful. V.

REMARKS:

1. In this e5onfiguration, one player should be in one and only one phase at any' 4)

instant although sometimes it is hard to distinguish between phases because

of their ývery short periods. For example, one player usually identifies what

strategy his opponent is taking almost at the same time he discovers his

opponent and thus it is usually hard to distinguish between phase I and

phase 21for this player. L

2. At any instant, two players may be in different phases because the phases for 1keach individual player may last for different periods. Moreover. the last two

phases for each individual player would alternate as tine pas•es. However,

the mutual and continual observation of each player by his opponent is also

assumed, as is their mutual ability to identify the opponemt's maneuvers.

3. Although the dependence of next action on the opponent's strategy is usually

not clear in general zero-sum differential game problems, this configuration

is realistic for many applications of differential games and other real-life "

conflicts. In fact, in the general zero-sum differential game problems, each

N *. -; -, .
- , - -- - - ' :,
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player in such games is supposed to play his own optimal strategy regardless

of what his opponent does. Failing to do so on one side may do the other

side a favor by increasing or decreasing thie relevant cost function. However,

not only are there some categories of differential game problems in which

the optimal strategy of one side depends on the strategy of the other side.

but also real life seems to be like that. A pilot will rarely fly an absolute

optimal trajectory and a good pilot will overcome a poor one by capitalizing

on the latter's mistakes. Thus, lie will formulate the plan of his actions in

accordance to what his opponent happens to be doing.

To justify the general configuration given previously, we shall give the following

simple two-player game problem in which E denotes one player (e.g. an evader)

and P the other (e.g. a pursuer). In this example, we shall omit the phases I and

2 in the general configuration, since they are conceptually simple in this case, and

emphasize the pii_.:c 3.

Example:

(onsider a simple game probletr i,1 a 2-dimensional plane. p is the upper half-

plane and R is thi x-axis. The vecto-gram for E is shown in Figure 3.1; it has a

-,ownward unit vertical component and a horizontal headline of half-length u(x.y),

a positive and smooth function. That of P is circular of radius w(x, y), again a

smooth, positive function with always w < u and, for some constant c, w < c < 1.

The total velocity for x is to be the vector sum of a choice from each vectogram.

Analytically all this mean3 that the kinematic equations are

S= u(x,y)O/ + w(X,y)sin¢, (3.1)
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= -1 + w(xY)coso - < t < 1. (1.2)

The payoff will be terminal with 1 = x on R (where v =0). Thus E will strive

to have x reach R at a point as far right as possible, and P similarly struggles for

the left.

Always E will play his rightmost vector (' = 1 in the KE). At Figure :1.2 let

,A be this vector. The line XB is tangent from X to a circle of radius w (w

is reckoned at V) and center A. Then XB is a properly oriented semipermeable

direction. If a family of curves is drawn (an ordinary differential equation solved)

having these directions as that of their tangents at each point, these curves will

be semipermea If each is labeled with the value of H at its meeting with -. the

labelings will constitute V(x).

U U
(a) (b)

Figure 3.1: Vectograms of Players E and P

From Figure 3.2. it can be seen that

3 t 1
U

= t-tg- - 1
U

= -"-tg-'-, (3.3)
U

and

sino3 = (3.4)
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x tg 1

Figure 3.2: Trajectory

It follows from equations,3.3) and (3.4) that

7- r + t9I + s.n-1 w (35)

If we can consider u(xy) to be a control for the evader, it is clear from eq. (3.5)

that the control for the pursuer depends on the control of the evader.

3.2. Architecture

A paradigm for differential games with neural networks is shown in Figure :3.3. It

is called a one-player paradigm of differential games with neural networks because-

only one side of the game is considered. Figure 3.:3 clearly :epresents the general

configuration discussed in the last section although the first phase is omitted. The

paradigm consists of two stages. Stage I represents one player's process of making

a control decision, which imitates phase 2 and phase 3 in the general configuration.

In this stage, the neural identifier takes the environmental infc: mation and gives

the estimate of the opponent's control strategy. The input information to the
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Neural Identifier is relatively independent of the system state variables because

the network takes only the environmental information which usually comes from

the sensor, e.g., from readings of an odometer. To represent phase 3 of the general

configuration, we use another neural net, called Neural Controller. for the control

purpose. Based on the estimate of the opponent's control strategy and the optimal

criterion given by the user. the neural controller gives the optimal control for the

player. The information of the state variables x is needed for evaluation of the

optimal control because the neural net controller is usually viewed as a part of

the system for stage I.

In stage II, because we only consider the one-player paradigm, we simply put a

neural net controller in stage II. which represents the process of making a control

decision for the other player. We assume no control over the player, and he can

make a control decision based on his own criterion.

stage I!K
Goal selector

ontroller Adaptor

T- -77
stage IH j env ronment

Controller 
-*-Goal 

selector

Figure 3.3: One-player Paradigm of Differential Games With Neural Networks (a)



6-1

The system is described by a set of differential equations

x - f(x, 0, 4'), x(to) = X0, (3.6)

where f(x. o, v:') is an n-dimensional vector of continuously differentiable functions

and x is an n-dimensional state vector. The goal for both players is to choose o

and c' to maximize and to minimize the cost function J(o. e', xo). i.e..

max min J(6, •, xo), (3.7)

where (P is the feasible set for o and 'P is the one for 40. The optimal value is

denoted by Joptimal

Joptimal = max min J(6. ', xo). (3.8)

Now let us define J, by

Jp = max J(t, 0,,xo), V' E ', (3.9)

where again -(P and IV are the feasible sets which contain all possible values for 0,

4 respectively. We have

/optimal = minJ,. (3.10)

Obviously. J,. is a functional of t. Replacing v by t'. the estimate of v, yields

J - = max J(o, L!,,xo), •'E ¢.(3.11)

Equation (3.11) is important in the sense that it is the analytical representation

of stage I in Figure 3.3. Namely, equation (3.11) is the representation for the

player who tries to us- 0 to minimize J(O,t,,xo) based on the estimate value

4'. Changing the cost function J(6,i',xo) is equivalent to changing the goal

-... . '.. .\
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selector[761 in stage I. Based on the estimate of the control strategy v,, one player

makes a control decision using the optimal criterion (3.11).

If we exchange symbols t, and 0 in equation (3.11), it is equivalent to exchang-

ing p and 0, in Figure :3.3 and Jý is, in this case, representing the player who tries

to use e' to minimize J(o, ',. x0) based on the estimate value 0. To represent this,

we define J, and Joptimal by

J = minJ(O, ,xo), 0 E I, (3.12)

Joptimal = minI. (3.i3)

Figure 3.4 shows the paradigm for this case. One question may be asked about

the equivalence of Figure 3.3 and Figure 3.4. That is equivalent to asking whether

Joptimal = Joptimal" (3.14)

A more detailed discussion on this topic will be given in the next section.

Unlike the general scheme of differential games, the enemy's strategy need not

be optimal in this paradigm. Instead of assuming that the enemy plays optimally,

we shall consider all the possibilities that the opponent can take. This can be

seen in equations(3.9), (3.10) and (3.11). In equation (3.9). J, is a functional of

4' which takes all possible values from the feasible set CI.

The above paradigm assumes thac the function f(x, ¢, 0) is known and it is

continuously differentiable to all its arguments. We do not eliminate the possibility

that f(x, 0,?P) is unknown, in which case an additional identification process is

needed to get the estimate of f(x,0, ,). For simplicity, we assume that the r

function f(x, V,') is known throughout this work.
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[x

Systm

stage I W
tC................ Goal selector

Controller Adaptor

NN
Identifier

stage II stenvironment

(onpollr =.mGoal selector

Figure 3.4: One-player Paradigm of Differential Games With Neural Networks(b)

3.3. Interchangeability

In this section, the following assumption will be justified

Joptimal =- "optimal- (3.15)

In general. the following statements are equivalent:

(a) o and t. are exchangeable in Figure 3.3 and Figure :3.4.

(c) Interchangeability:

maxminJ = max(minJ) = min(nax J),

subject to i" = f(x. o. v).

Before we discuss the problem in detail, let us look at a simple example [12].

Define L(u.v)= u0 .3uv + 2v0, -1 < u < 1. -1 < t, < 1 and it is not hard to
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see that

max(min L(u,v)) = 0, (3.16)

and

min(inaxL(u,v)) = 2. (3.17)

Therefore.

max(min L(u, v)) # min(max L(uv)).

From this, we know that it is not always true that statement (c) holds. The

condition that statement (c) or (a) holds is called the interchangeability condition.

In general. consider a continuous-time system whose equation is given by

x A(t)x + B'(t)u1 (t) + B2(t)u 2 (t), t > 0, (3.18)

L(uI, U2 ) =J~,I,+f{xtI
Lu 0UQ ) + + IUI(t)12 - r(t)1U2(t)ldt, (3.19)

where Qf Ž 0, Q(t) >_ 0, t E (0, til, r(t) > 0, t! is the terminal time, all matrices

and u1 and u2 have piecewise continuous entries. The initial state xo is known

to both players.

Let -' denote the policy space of player i. Further, introduce the function J:

_-, × -X . R by

J(/p1 ,p 2 ) = L(u1 , u 2 ), (3.20)

uk= •uk(.), k E i; Pi,kl E 2'.i = 1,2, (3.21)

where we have suppressed the dependence on the initial state xo. The triplet

{J;:', =2} constitutes the extensive form of the zero-sum dynamic game, in

the context of which we can introduce the notion of a saddle-point equilibrium.
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Definition 1:

Define the following quantities:

J = Min max J(p' . 2).

AA E-='1 o2E-2

J = max min J(pl,p2),

where J and J are the upper value and the lower value, respectively. Generally.

we have the inequality i > J in the context of static games.

Definition 2:

Given a zero-sum dynamic game {J:- 1.- 2 }, in extensive form, a pair of policies

(A", P2.) E x"- 2 constitutes a saddle point solution if, for all (ptIU 2 ) E -V X-2,

j(' 1 ,p 2 ) _< p := j(p'l.,A.) < j(p 1 , 2*). (3.22)

The quantity J above is called the value of the game, which is defined even if a

saddle point solution does not exist, as

J:= min max j(p 1 , k 2 ) = j= max min J(pl,p) =: j (323)
JulEV1 

A
2 E= 2  

;A2E=2 ,'E-=

Only when J and I are equal, as in eq. (3.23), is the value J of the game defined.

In [9], Basar considered the system described by eq. (3.18) and the cost function

in eq. (3.19) and gave the following result on the open-loop saddle point solution

[9]:

Lemma 3.1 The quadratic objective functional L(ul, u2) given by eq. (3.19), and

under the state equation (3.18), is strictly concave in u2 for every open-loop policy
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u1 of Player A. if, and only if. tht following Riccati differential equation does not

have a conjugate point on the interval [0. t1J

5+ A'S + SA + Q + I-SB 2BBS = 0; S(tf) = Qj" (3.24)
r

We have the following result on the open-loop saddle-point solution [9]:

Theorem 3.1 For the linear-quadratic differential game with open-loop informa-

tion structure. let the condition of above Lemma be satisfied, and introduce the

following Riccati differential equation

+ A'Z + ZA + Q - ZBIB'1 Z + !ZB2BI2Z = 0; Z(tf) = Qf" (3.25)
r

Then.

(i) The Riccati differential equation (3.24) does not have a conjugate point on

the interval [0, t11.

(ii) The game admits a unique saddle-point solution, given by

u. I* U'*(t; zo) = -B'(t)'Z(t)z"(t) (3.26)

u2"(t) =P 2"(t; zo) = "tB2(t)'Z(t)x*(t), t > 0, (3.27)

where xfo.,,] is the corresponding state trajectory. generated by

x- = (A - (B 1 B" - -B 2 B')Z(t))x"; x'(0) = xo. (3.28)

r

(iii) The saddle-point value of the game is

L = L(u 1", U2 ) = x'Z(O)Xo. (3.29),
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(iv) If the Riccati equation (3.24) has a conjugate point in the open inter'al

(0, tf), then the upper value of the game is unbounded.

In this study, we would consider the system described by eq. (3.18), assuming that

the interchangeability condition is satisfied. Thus, we have the following:

ASSUMPTION

min max J = max min J.

As stated ii the theorem above, the assumption can be checked by the con-

jugate points of the Riccati differential equation ( 3.24). If this assumption is

satisfied, the game saddle point and the calculus saddle point are equivalent [12].

3.4. Algorithm

Based on the discussions in the previous sections, several algorithms will be pre-

sented in this section. The basic idea is for one player to repeat phase 2 and

phase 3 of the general configuration described in the first section while assuming

no control over his opponent's strategy. For the other player, his strategy can

be generated by some external generator. This process results in the one-player

par digm algorithm which will be described below. In practice. the other player

may implement the same process of the phase 2 and phase :3 as well, which re-

sults in the two-player paradigm algorithm. The two-player paradigm algorithm

of differential games with neural networks will be discussed later in this section.

The details of each algorithm will be given. One should know that the basic

frame of each algorithm remains the same, namely, to repeat stage I and stage

II for one particular player or all players. la the one-player paradigm algorithra,
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phases 2 and 3 of stage I for one player are repeated and we assumed no control

over the strategy for the other player. In the two-player paradigm algorithm, we

implement the same process of both stage I and stage 1I for each player. Finally.

in algorithm 3. we implement the proce-; in ý!a I , 11 ,,n the idfea discussed

in the last Section 31.2. Fi,-,ire I.) ,how ,, e e ,;,",r ?,he implementation.

stage 11 stage II

stage I •' ,: I

t "t

In what follows. ti,e pia3,-r to ' !1 ;.x.m r"!"' a • r ,. , aOpp:,iel is called -own

player-, and his counterpart is -: e ,tuher pay,•r

Algorithm 1(One-play;er Paradigm):

Stage I: (1) Using the environmental information, identify the other player's

control strategy.

(2) Based on the estimate of the other player's movement or strategy,

generate a new control value for own plaver by using the optimal control

law.

Stage II: Generate a new control value for the other player.

REMARKS:

1. The environmental information in stage I is usually numerical values of

observable state variables, but that information could be curves generated

-i
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by state variables. One way to obtain the environm-;ntal information is to

first obtain the characteristics of the segment of ci~r~es. e.g. the direction

information and the sharpness of the turning corner, and then match any

of this information with that stored in the database. The strategy- assigned

to any matched segment of curves will be said to be the strategy employed

to generate that segment. Details of the method will not be given here. In

the remainder of this dissertation, we will use tile observable variables as

the environmental information in stage I.

2. The control value in stage 11 could be generated by any control law (or

maneuver) since the own player has no control over the opponent player.

In this algorithm, changing control law on-line is allowed for the opponent

player. The own player has the capability, realized by an identifier in stage I,

of keeping track of the changes of control strategies of the opponent player.

3. In practice, the difference in the length of time intervals for stage I and

stage II could be significant since an optimal control law is used in stage I

and hence the time required to compute the optimal control could be much

more than that in stage II.

4. In our simulations, we realized the identifier and controller using neural net-

works. There are many publications in the literature discussing the problems

of neural controllers (e.g., [41., 95]). This type of controller is particularly

useful for difficult control problems [3].

In what follows, we give a slightly different algorithm called a two-player paradigm

algorithm. By assuming that two players use the same process of identification

and control, we can construct, in Figure 3.6. a different paradigm of differential

I: Z
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games with neural networks. In this paradigm, instead of assuming an arbitrary

controller structure in stage II, we use the same process for the opponent player.

xI
System

stage I
Goal Selector

Controller Adaptor
stage 11 A x

Adaptor - NN NN
w Controller Identifier

Goal Selector
environment

Identificr

environment

Figure 3.6: Two-player Paradigm of Differential Games With Neural Networks

In the following two algorithms, we assume that two players are engaged in

the entire encounter. For simplicity and clarity, we denote "Player A" for one

player and "Player B" for the other.

Algorithm 2 (Two-player Paradigm):

Stage I: (1) Using environmental information. idenitiy player 13's stratgy.

(2) Based on the estimate of player B's movement or strategy, generate

a new control law for player A by using optimal control theory.

Stage II: (1) Using environmental information, identify player A's strategy.

(2) Based on the estimate of player A's strategy, generate a new con-

trol law for player B using optimal control theory.
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Last, we give an algorithm based on the discussions of the last section. In

this case, the optimai control in stage II could be very complicated and highly

nonlinear even though the original system is linear. This will be illustrated in a

pursuit-evasion game problem in the next sectica•.

Suppose that the system for two players is described by

k = f(x, , w), (3.30)

where f(x, 0, V)) is a vector of differentiable functions, x is the state vector of

dimension n (n is a positive integer), 6 is the control strategy for player A and Vi,

is the control strategy for player B.

The goal fnr both players is to maximize (or minimize) a cost function given

by J(O, )

max min J(-0, i) (3.31)

Again, we use J4 to denote the optimal value for J(O,V) if ?k, the estimate of

player B's strategy, is known, that is

J4 = minJ(O,a'). (3.32)

With these notations, we have the following:

Algorithm 3 (Optimal Control Paradigm):

Stage I: (1) Using the environmental information, identify player B's strategy.

(2) Based on the estimate of player B's strategy, generate a control

strategy by using optimal control the ry.

Stage II: From the strategy used in stage I, coastruct a new problem

maxJ,0 (or minJ,),

subject to k =fx,,)
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3.5. A Pursuit-Evasion Game Problem

3.5.1. The Problem

In a pursuit-evasion game[12], the pursuer's control is his acceleration, ap(t), nor-

mal to the initial line of sight (ILOS) to the evader. The evader's control is his

acceleration, a,(t), also normal to the ILOS. The relative velocity along the ILOS

is such that the normal time of closest approach is t/. If v(t) is the relative veloc-

ity normal to the ILOS, and y(t) is the relative displacement normal to the ILOS,

the equations of motion are

- ap-a, v() =Vo; (3.33)

= v, y(to) = 0. (3.34)

The pursuer wishes to minimize the terminal miss, ly(t,)l, whereas the evader

wishes to maximize it, so the performance index may be taken as

j = l~y(t,)]2. (3.35)

The accelerations of the pursuer and the evader are limited

la.1 • ar,,

[ael < aem, (3.36)

where ap, > aem. The solution proceeds by first forming the Hamiltonian

H = A,(ap - a,) + ,\AV. (3.37)

The adjoint equations are then

A,, -Ar, A,1(t 1) -0, (3.38)

y= 0, A,(t1 ) = y(t 1 ), (3.39)
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and the optimality conditions are

ap(t) = -apmsgnA,, (3.40)

ae(t) = -acmsgnA,. (3.41)

The adjoint equations are easily integrated to yield

A,(t) = (t1 - t)y(tj), (3.42)

A(t)= y(tf) = const. (3.43)

It is, therefore, clear that

sgn A•(t) = sgn y(t 1 ) = const. (3.44)

- Substueing eq. (3.44) into eq. (3.40) and eq. (3.A1), and eqs. (3.40), (3.41) into

eq. (3.33) and eq. (3.34) yields a simple set of differential equations whose solution

may be written as

y(tO ) = vo(tl - to) - •(apm - acm)(t! - to) 2sgn y(t 1 ), (3.45)

which can be used for determining y(tf). Thus, we have

I(t- to)[ 2,o - (apm - a"m)] if 2vp > Ii f to(t !- to )( -p m, - a ,,,)

Of) -(t= - to)2 [=vL - (ap, - am)] if (2vo < -1.tt ( t l-to )( ap--aem

Substituting the above equation into eq. (3.40) yields the control for the pursuer

as follows

f -apm if a, > 1,
a.(t) ap= , if a, < -1, (3.46)

a, +a-( if -1 < a, < 1

where

2vo
a, = )(ti - to)(apm - aem)'

2y(to)A = -v(to) f -t
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3.5.2. Solution By Using Neural Networks

"From the last section, we know that the differential game solution, for ap is

ap(t) = -apsgn[y(tj)],. (3:47)

The one-player paradigm algorithm will be used for our study in which a, is either

a fixed value or a continuous function of time (see Figure 3.7).

0

Figure 3.7: A Typical Function for a,

In what follows, we assume that ae(t) is an independent variable. We shall

show that the control strategy ap(t) for the pursuer is actually a function of ae(t).

From equation (3.47), one car readily see that ap(t) is constant over the interval

(to, tf). The sign of ap(t) depends on the sign of y(tj). Therefore, the explicit

expression for y(t) is necessary.

From eq. (3.33), we know

v(t) = v(to)+ja1 , r)dr-ja,(r)dr, (3.48)

to ,to
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which yields from eq. (3.47)

v(t) = v(to) - ap,,sgn[y(tf)](t - to ) - a,(r)d-r. (3.49)

Letting

ae(t) = jae(,)dr,

we have

v(t) = v(to) - apmsgn[y(tf)](t- *o) - aM(t). (3.50)

It follows from eqs. (3.34) and (3.50) that

y(t) = v(r)dr

= fj[v(to) - apmsgn[y(tf)I(r - to) - a,(r)]drtot

= v(to)(t - to) - ý-msgn[y(tr)](t - to)' - t a,(r)dr. (3.51)

Let

-,(t) =ft ae(r)dr,

which is equivalent to

ae(t) = jae(r)dr

I :jt a,(p)dpdr. (3.52)

It follows from eqs. (3.51) and (3.52) that y(t) depends on the time function a.(t)

(to <_ t < t1 ), which further implies from eq.(3.47) that ap(t) (to :5 t < t1 )

depends on the function a,(t). This observation further justifies the statement of

phase 3 in the general configuration in Section 3.1.
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Next, let us consider the optimization problem

min J(to, ap, e), (3.53)
ap

subject to i= ap(t) - a,, v(to) =vo, (3.54)

.= Y(to) = yo. (3.55)

Its solution isdenoted by a;(t), which is a functional of a,(t). Please note that in

this optimization problem a,(t) is the estimate of ae(t).

We further consider the optimization problem

Imax Jto, aae) (3.56)
ae

subject to = a;(t) - ae(t), v(to) = vo, (3.57T

V= , y(to) = yo. (3.58)

If we can denote sgn[y(t,)] by S0,(t) which apparently means a functional of ae(t),

-... -it is interesting to see that

a;(t) = -apSa.(t), (3.59)

"and thus the system equations for the optimization problem (3.56), (3.57) and

(3.58) becomes

= a;(t) - a(t)

= -ap.•.S(t) -ae(t)

= f(ae(t)), (3.60)

and

= v(t). (3.61)
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Therefore, we know from eq. (3.60) that the optimization problem (3.56), (3.57)

and (3.58) now becomes a nonlinear optimization problem even though the original

one is linear.

Solving the above nonlinear optimization problem for an arbitrary function

a,(t) is usually very diffic,'lt. In our case, we only consider the fcllowing function

a,(t) = -asgn[y(t 1 )], (3.62)

where a, is assumed to have an arbitrary value between zero and aem,.

Substituting eq. (3.62) into eq. (3.52), we have

ae(t) - -~ asgn[y(t,)]dpdr

-asgn[y(tr)]1(t - to) 2 , (3.63)

which, together with eq. (3.51), gives

" 1 •1
y(t) = v(to)(t - to) - -apmsgn[y(tf)](o - to) 2 + aesgn[y(tf)](t- to)2.

(3.64)

By comparing eq. (3.45) with eq. (3.64) , we can clearly see the reason why we

have chosen this special form (3.62). The only difference between eq. (3.45) and

eq. (3.64) is that the maximal value of ae(t) is used in eq. (3.45). An immediate

benefit from this difference is that the formula of how to determine the sign of

y(t) has the same form as that of the last section. This, by replacing a,, by a,,

we can use the eq. (3.45) to determine the sign of y(tf). Although we have such a

nice representation when the special form (3.62) is used, we do not have to confine

ourselves to it. In fact, any type of integrable function may be used for ae(t).

-_ .. ..', -..-.. N . -
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3.5.3. Neural Identifier

From previous subsections, it is known that aý(t) is a functional of aj(t). Thus.

identification, of a, is essential for our work when a, is unknown. In this subsection,

the identification is accomplished by a Neural Identifier which is realized by a

trained neural network.

In our problem, a neural identifier is a gencric mapping between two domains.

The first one is the Environmental Information Domain (EID) which is usually

accessible. For our problem, the other domain is the one-dimensional space R

if the system which we are considering is a single-input control system. The

environment?] information from EID is usually the numerical values of observable

state variables or curves of state variables. The mapping is so defined that for each

piece of information from MJD there is one and only one point in R which uniquely

determines that piece of information. The~ function of the Neural Identifier is thus

* to determine the point in R which yields that piece of information. The way to

determine the point in R yielding the environmental information is essentially

the method of training the network. We shall discuss the Phase-plane training

method, which will be used- in our simulations.

Phase-plane Method

The function of the Neural Identifier is to estimate the strategy for the evader.

ae(t), based c-n the environmental information. In view of the fact that a player

performing identification cannot make any control decision, we may assume that

a.= 0 (or any other real number) during the Identification Process. Then, we

have the following simplified system equations

V = Ue,(3.65)
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Aae

Environmental Information

Figure 3.8: General Diagram for Neural Identifier

= , (3.66)

which yields

v(t) = v(to) - a,(t - to), (3.67)

and

y(t) = y(to) + [ v(r)dr

= y(to) + J(v(to) - aer + a!to)dr

= y(to) + t,(to)(t - to) - !(t - to)2 . (3.6s)
2

Substituting eq. (3.67) into eq. (3.68) gives

y(t) = y(Io) + v(to)( -v(t) v(to) - ae (v(t) - v(to))2

" a, 2 a (3.69)

Denoting

Ay(to) = Y() - y(to),

Avkto) = v(t) - v(to),
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we have

Ay(to) = -(t°) v(to) - I- A v(to), (3.70)

a 
2 a

which yields

A v( t0 )
a, = A (A(to) + 2v(to)). (3.71)2-1y(to)

Equation (3.71) represents the relation for identifying the enemy's strategy.

A
a.

v(to AvOtO) Ay(to)

Figure 3.9: Phase-plane Method for Identification

As mentioned before, typical types of envircnmental information are the nu-

merica! values of the observable state variables or the curves generated by them.

A trajectory of phase plane for positive values of a, is shown in Figure 3.10. E%-

ery time a pursuer performs the identification using the Neural Identifier only

the increments of state variables y(t) and v(t) at the time when he begins the

identification and the value of v(t) at that time are fed into the network. The

"output of the network will be the estimate of .a.
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ae > 0

Figure 3.10: Trajectories In the Phase Plane

3.5.4. Training the Network

A diagram of the Neural Identifier is depicted in Figure 3.11. As mentioned above,

we will use the Phase-plane method to generate the training set for the Neural

Identifier. For our convenience, we rewrite the formula as follows

ae = "t 0 +2,), (3.72)2Apt,o

where the quantities 50to, and Ag7t, are used in place of Avt.v, vt, and Ayo for

the reason below.

The reason why we would use ito, A and Agto in place of vt,, AvLo and Llyto

for identifying the strategy a, is that the information coming from any practical
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S~V
to

AAV Neural Identifier ae

Ato

Figure 3.11: Block Diagram fr' Neural Identifier

system is always corrupted by some type of noise although the noise might be

small. This substitution is illustrated in Figure 3.12 where the observable state

variables are converted by some device, called device "I", into some variables

suitable for the purpose of identification.

At
At1Nois Noise Nois

ae System Neural a
g Identifier

Figure 3.12: Structure for Generating the Training Set

In the ideal case in which the noise is zero, i.e. Oto = v, At -t = ,

Aj= , we shall have from eq. (3.72) that

a, -ý (Aeto + 20to )

_ •lv' (Avte, + 2Vjo)2.Ayt,
Av~0(tto 2a,
2 -- +2~) Avto(2Av,, + Avto )

-- a . (3 .73 )

Thus, a, becomes ae in the ideal case. The above discussion implies that the

Neural Identifier functions as an inverse system of the original system. Therefore,
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it follows that we need- to use the Phase-plane Method to generate the training

set for the Neural Identifier with noise-corrupted inputs. The necessity of this

assumption will be shown in the following discussion. We know that there will

always be some errors, no matter how small they are, betweea the ideal mapping

of equation ( 3.71) and the one approximated by the Neural Identifier. These

errors can be viewed as some sort of noise added to the system in the assumption

that the Neural Identifier is an ideal mapping of equation (3.71). Thus, we may

assume that the Neural Identifier is an ideal mapping for the equation (3.71),

and the errors between the ideal mapping of the equation (3.71) and the actual

identifier is due to inputing imperfect information (corrupted by noise). This

idea provides a basis for the method of generating the training set for the Neural

Identifier. We simulated the noises by generating some random numbers with a

given variation. The random numbers are assigned to vt., and thus Vt,, is obtained.

Note that At vt, = -, = -1 since a, = 1 and ap = 0 during the Identification

Process and Agt0 is the output of the system driven by a, (see Figure 3.13). The

values of De0, Azt. and Agt0 are put in each input line of the training set and the

value computed using formula (3.71) is the desired output of the Neural Identifier,

corresponding to those particular Ant0 , A pnd A-gt0. Repeating these input lines

and desired output lines forms a training set for the Neural Identifier. Please note

that, instead of trying to approximate a mapping of eq. (3.71) for arbitrary inputs.

we approximate the mapping with some specific domains which are the outputs

of the original system driven by a,.

The structure and parameters of the Neural Identifier are summarized as fol-

lows:

Type of neural network: Hetero-Association,

Control strategy: Backpropagation,
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Learning rule: Delta-rule,

Transfer function: Sigmoid,

Scale: 1.0,

Summation: Sum,

Learning rate: Coel = 0.9, Coe2 = 0.6.

random
number noise

i:~ aI states - At (_..
=[System AV 01 I ,- IF'=a

Figure 3.13: Generating Data for Neural Identifier

3.5.5. Simulation Results

The simulation works are done in a Sun 4/260 workstation under the environment

of UNIX. All programs are written in C and the outputs are numerizal values. The

parameters of the system used in the simulation are summarized in Table 3.1. In

our simulations, the value of a, is fixed and the pursuer is to identify the value a,.

As shown in Figure 3.14, the simulation is carried out in several different periods

(that is, period 1, period 2, etc.). In each period, the index is incremented from

one to the maximum value state-Illimit. The goal for the purs er is to compute

control values based on the estimate of a, such that the value of at the end point

of each period is minimized. In each individual period, the first i terval (denoted

by I in Figure 3.14) is for the pursuer to obtain the estimate of ae and, in our

simulation, ap - 0. The maxirfium number of periods in entire simulation is the

I€
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greatest integer less than globaLtime-Jimit. Therefore, our simulation is virtually

different from that in the original work.

Period I Period 2 Period 3
A A A A A A A A A A A A A A A
i=! i=2 i=3 i=-4 i=5 i=1 i=2 i=3 i=4 i=5 i=l i=2 i=3 i=4 j=5

Figure 3.14: Simulation Periods

The flow chart of the program is shown in Figure 3.16.

Table 3.1: Parameters Used in Simulation

ae 1.0
stage-l-limit 5
global-tirne.linit 5
apm 2-.0

For comparison of the ideal case where there are no noises with those corrupted

by noises of different variations, we have done the following experiments. They

are:

Case [i] No neural networks, no noises, (simu-back.c.

see Figure 3.1.5 (a)):

Case [ii] Noise with variation of 1-14 for t% . (sii:u3.c.

see Figure 3.15 (b)):

Case [iii] Noise with variation of 1-11 (uniform (list ribittion [; . (;].

for vt0 and noise with variation of 0.0-1 (uniform distribution
/

[-0.1 , 0.1] for Apt, (simu-4.c, see Figure :3.15 (c)):

Case [iv] Constant (- 5.0) disturbance in vt0 and constant (+ 5.0)

disturbance in Aqto(simu3_d.c, see Figure 3.15 (d));

Case [v] Comparison of the following cases (see Figure 3.18):

/ / . - . .



(a) no disturbance (solid line).

(b) the case [iv] (dash line),

(c) same as case [iv] except that -10.0 for Vt'o

and +10.0 for Ag, (dashdot line),

Case Sl: simu-back.c Case lid.: simuc

i4 -----------..
V V

0 0

-2 . ....... .-2. ... .

-.4 -41
0 5 10 15 20 0 5 10 15 20

(a) time (b) time

4 Case Mil: simu4.c 4_ CseJi simu3 d.c

V

02 '- , . '" . .- .... .. ,, .." . " ....-." . , , -... ....." I, .... " '. .. ..... ., I ....... ........ --

0 ~ . .... 0-

.2 ....... .. ...... ........ . .. .... . -2...... .

-4 -4U

0 5 10 15 20 0 5 10 15 20
(c) time () *time

Figr :315 Siuato Pos fo Difreta Gae ihNurlNtoka, dente th easetii]imu4.e of aadsiisteotml motoaue3orthdprser

-4 .

Figre:3.1: Siuato Pos' o Dfreta Gae wihNerl ewok

sing the parameters in Table 3.1. we know that at steps 0, .5. 10, 15. 20 the

pursuer gets the estimate of a, Then. in the first period (step 1 through step

.5), in the second period 9step 6 through step 10), in the third period (step 11

through step 15), and in the fourth period Ostep 16 through step 20), the pursuer

computes the optimal control value a fro each of these periods. The values of the
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states y and v are also gievn in Table 3.2. Shown in Figure 3.15 are the curves

plotted using Mat-lab software. The codes for the five cases are similar except for

minor differences.

Table 3.2: Output Data for Simulation

T" | Simu back I Simu3 Sis.u4 Simu3- d

Ti estý e I, y I , I g- e 2lo•, o•l-;,, vao-: o yoI° v , o -o.,p y- 1:

IN Ii.. 25 :{ . .03 12 0.S96 1-.4:1 .03 .10 0971 21.5 4U .1.0 0.990 I 5331 .03

2 .- 191-44M 1 .9 156 1 1.19 .0343 0S7 .3.1 *I.3 3 .oIM) 1 .0A6 096 2358 I I

' I •": °" ,o,, ,o - o~o, on: us .,~ o s', z=' ,- .c, en
3 1 N , .13? 0 .1: ,99 1 I : I -X . I 0.7 | 4 A .6 0. 79" I J5 1 1.31 0 -10

V

5° a It I.-: 0.2" 4 [ .o• 0911 .!3. *C!3I 1.13410.99 " 2 .5 3 1. 31

6 T 1_3 [ 473 CM c.3 "9 1-1) . 13o 4:j. 7o9: C 073 oo:Ju
7 j~ J 0.701 0 .9" 10.713 0.31 0.03 J0.96.1 & 3.45 J 044 4.0' 09 " 0.73 f 0S119 J0=041

8 0.312 0.1 01 3 4 .! 0.1) CIO: .3. 9. 3S .w 4.17 ' 0 .M • 7 •1.13:

C. 10 70 3 I I -. 9 11 0-. 0 3 .
I I I

10 I1 0.92 a3 ± :51 C-999 0.7 .3 - 0.6 1 0.", .4-9 4 0.990 . .4393

II ~ I d -1.:: J 1.5:5 010" 2.921 4 .26.1t0 99 1. .1AU0.;1 .9L I -LIU -U96

12 1 0; 1 I.-,l O7' 0 .9" -7 O.= .1 M1 O I*l '.:X;l I 4'3 .!,--' 0.9$ 1,.13 IL•.d:I 4.661

13 . 10 0.192 2 ..AG" .: so 0 ..1 209 . 7 .396 0.99' 1.935 f ? ... S 04.4

1 1 J .") .-0 1 1 :34 1 90 .39 I.- :117 0.9"0 1.935 1-.7~3 15 U

K 1." 0 :m ." 1.0 106  CA O I 2.39 :.C377 0.995 1.913 4 .
03 '14

16 1 093 1 sI.11 C .:;g 16' 1-l11 01 0-: 2 .C 0963 =3 3.412.2.&

17 jj 19 0.ij 3 23 1 JO.3 I 0 :99019 3.340400.. J J30 0.02 0.901 0=1 2.359 [,3.5W

18 3 0:93] :.A53 cj44: 0.999 O.2o91..13 0J.0 1710.972 1 -131 .4.1:71 0995 0=13 2J3v . 441

.610.9 - 3.0.9 1226 -M.1 2 0.97-1 0=:4 2.5. .2.12 C.990 0.= 1.:31 3 .1.137

20 0.290 3 :.20 4.03 1 02, .073 .'33.7 .4 .1: .. 5 09 3 0.:143 . 2._ _ _ _ 0
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Figure 3.16: Flow Chart

3.5.6. Discussion and Conclusion

As mentioned before, the goal for the pursuer is to minimize the values of y

at step 5 (for the first period), at step 10 (for the second period), at step 15

(for the third period), and at step 20 (for the fourth priod). For comparison,

the simulation result for the same problem without using neural networks is also
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given (see Simu-back). As shown in Figure :3.15, there always exists a jump in y

between the beginning and the end of each "Identification Process* (please notice

that the values of y(5) and y(6), the values of y(10) and yll), and the values of

y(15) and v(16), in each of the first four cases). This is because we set ae = 0

during the "'Identification Process", therefore, the system runs freely. One may

argue that the magnitude of the jump in y in the "Identification Process" can be

reduced if we keep ap at the previous value, instead of zero. But it turns out not

to be true (see Figure 3.17). SOUI NO ,,=V so. DA ,MV a#

4 "

.4'..

0 2 4 0 a to 12 14 14 Is :0

Figure 3.17: Programs Simu-back.c Without Previous ap and That With Previous ap

Different simulation results will be compared here (see Figure 3.15 and Fig-

ure 3.18). The result for program Simu3.c exhibits the best performance among

the experiments done in the sense that the value ly(t')I has achieved the mini-

mum (see y(5), y(10), y(15) and y(20) respectively from the table). The results

are reasonable because in program Simu3 only the quantity Aito is disturbed by

some noise while in program Simu4.c both quantities of I0to and ,ýto are dis-

turbed by noises, and additional constant disturbances are added to vto and A~to

in program Simu3.d.c. The results are also explained partly by the accuracy of
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the estimate of ae, i.e. a,. Since the program Sirnu3.c has the highest accuracv,

it has a better performance than the others.

Simu..b~ck

I IM

a 10 *4 ;A 1 o 2
- 41Stsimu-back
:4t~I~ -. . - - -:2rnu~

@J.J

*~~~1 12 ~ ~ A I 14 it is a

(jjFigure 3.I18: Comparison of Simulation Results

*The simulation r esults show. the feasibility of this approach. One may like

to apply the algorithms presented in this work in some more complicated cases:

-.. highly nonlinear. corrupted by noises or even with uncertainty. What should be

kept in mind is that both sides of the game can implement the same process.

Therefore. in some sense, whoever has the better information about what his

- -opponent is doing or a more accurate estimate of his opponent's strategy would

eventually win the game. Using the principle outlined in the general configuration

of this chapter, we can also implement the other algorithms presented in this

chapter. e.g. *'Two-player Algorit'-m", in the same or even more complicated

systems. When carrying out this further research, we should always keep in mind
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that the approach presented here is no longer the same as traditional approaches

to differential game problems. It deals with a, broader range of problems because

it allows both sides of the players to take ANY strategy. For this reason, it can be

expected that more properties exist about the optimal trajectories, controls and

feasible sets, which may also be a direction for further research.

3.6. Learning Algorithm of Feedback Control

In the previous sections, the approach to differential games with neural networks,

different paradigms and a case study example have been thoroughly discussed.

The approach is based on the paradigm of semantic control[76]. Two neural

networks, called Neural Identifier and Neural Controller, were used in each of these

paradigms. The neural identifier identifies the control strategy of the opponent

player based on the environmental information. The neural controller, on the

other hand, gives the control strategy for the own player. The subsequent sections

mainly discuss how to construct and to train the neural controller. A rigorous

mathematical derivation for weight updating rule of the neural controller will be
/I

given.

In [7]. a feedback control law in the class of L-layer neural networks is given

to control the discrete-time system such that viability conditions are satisfied.

The viability conditions are described by a subset K of the state space such that

dK(x,+l) = 0 for all n > 0, where dK(xý.+l) is the distance between the state Xk+1

and the subset K. The strategy underlying the external algorithm is to apply the

gradient method for the minimization of dK. The network learns or will learn

whenever the states lie outside of the domain K.

/""N" . . ' [ " - -" - - .. •• , :
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An extension to the differential game problems is considered. Based on the

one-player paradigm described in Section 3.2, a differential game problem can be

converted to an optimization problem provided that the estimate of the control

strategy for the enemy has been obtained. A similar approach to that in [7]

will be used for the differential game problems discussed in the previous sections.

However, instead of minimizing d&, minimizing an arbitrary cost function J is

considered. A detailed formula for updating the weights for three-layer networks

will be given.

3.6.1. The Updating Rule

4" Let us now consider a discrete-time version of the differential game problem,

defined as follows

max min J,+i (xn+i, n'n, On), (3.74)

On 
n

* subject to the difference equation

X ..x+ = xn,,n), x0 is given, (3.75)

where On = (O., •t.) •In = (.,'" ',), Xn = (,,x2.,,x,)

""'n , n E T, Xn E X, X is the state space. IP and D are the feasible subspaces

* in the control spacc Z for the control strategies L'n and on respectively, and f is a

"C1 mapping from X x Z to X.

'lWe can define a quantity J,+ii,.,, belonging to a subspace of the value space

of J, as follows

-- =Jn+,(xn+i, n) J,+i(xn+Ii'n, ,n), (3.76)

where tn is the estimate value for uOn.

L-"-.
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Having obtained J,,+,.,,, we can state the original problem as follows

min J, ,.(xn+1, 6n) = minJn,+(Xn+l, n ) (3.77)

subject to

Xn+l = (Xa,?Vnn), (3.7S)

where On E ). We are now trying to find o,, such that Jn+,, (Xn+I, 6n) is max-
imized. A feedback control law is obtained through an L-layer neural network

On = 0 L(Wl(,n),W 2 ((n),'",W, (n),Xn), (3.79)

where (L(WI(n), V2(n),., WL(n), xn) denotes the propagation of a signal x in

a neural network, and Wk(n) is the synaptic matrix associated with the network

layers k- 1 and k at step n. Let us denote the layer i by P' and the number of nodes

for layer P' by ni, i=0 ..... , L. For d single input control system, the number of

the output for the neural network should be one, that i-, nt, = 1. Using the same

notation, we can easily see that W.(n) E Rn"xn,-l, i=l, ..., L. For compactness,

denote the weight matrix by W(n) = (WI( i), W2(n), ..., WL(n)). Each WV,,(n) can

also be written as W,,(n) = (w7(n))n,.n,_,, q=1, ..., L. Moreover, let us define

the output of the ith neuron in the jth layer by x,. Thus, the output of the first

neuron in the last layer should be denoted by x4. The transfer functiorn for the

ith neuron in the jth layer is denoted by g'-(.). Thus, if we consider a single-

output network, the tran3fer function for the single-output neuron is g_. or

for short, gL-1(.). For our convenience, we also use the ,:ompact form gL(.) to

denote (g'( "Lg; (.)).

Having these notations, we can define a gradient learning rule, which is actually

the back-propagation learning rule,

w1.(n+!) = w•.(n)- awn (3.80)
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where a". is the gradient step factor. For this standard formula, computational

burden is mainly the calculation of whose computational load will increase

1t dramatically as L becomes larger.

For simplicity, we only consider the case in which the system (3.7.5) is a single-

input system. In this case, nL = 1. Note that
, 0 .I ,+ 1.• 19j ,,+ •.,. 7IV W

duiOw(n) = -• w7( (3.S1)0 0 -( n) ~ k -ý O z k,(,n+ l) W 7 n)

and
OfOA Of, OICL

Ow•(n) = O 1 9,.OwL (3.82)

Therefore, the key step is to compute 3 which contributes the most heavy

computational load. We only consider the case for three layer and single output

network since it is the most common case encountered.

At step n, the outputs of neurons in each layer are given by

011 -" XI,n,

0
=d Xd,n,.

d

='I 90(E k(r)Xk.n),
k=I

I I Ij= E,( nwk(fl)X),
k=1

I-j

k=1

11)x,,, = g, w,,(~k)

==
\ . n2

3 , = I W~k(n )X2.
X 92 1 k~

k=1

.- -
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For simplicity, we will ignore the dependence of xz, i = 0.... L,j = 1. ... n,. on the

integer a. In what follows, we will derive the formulas for computing quantities

4,r,- 'Again, for simplic;"y, we drop the r )tion n in uw•(n) and write wI,(n) as

IV77WI).

For q=L. we have 1DL = gL-I(•LX-) - gL_(E'Lj1 wixLLl), where g9L- 1s

the transfer function for the output layer, which is usually a sigmoidal function.

and XL-~~1 = (X ...,XL_1). Elementary calculation yields

O(e
9 L 

nL-1

WL. = -L-)( E Wfk )x -. (3.83)
1 Wl k=1

For r7=L-1, we similarly have

(DL = 9L-1I(WVLXL-1)
nL-I

-- 9L-1( 1 w i -), (3.84)
i--1

and

= gL2(WLIXL-)

= I

zL-1

nL- 2 1 z. t

= : ~~I~L~2 w;1~2 (3.S5)- IL- 2)

Thus,

OrL nL1 L L-1 ,,L at•'Liog I( g E-W( YxLI (3.86)

k=1wk )(wL 'I

where can be written as

L-i nL-2
=g9L-2( i ,L-1 L- 2

. (3.87)" "w-T gL2 E ik Xk )X j (38.
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For q=L-2, we similarly have the following set of equations

' •L -- gL-l(w AL-t)

10L, gl "-I~w ,,

= 9L-i( WL w'Xh1 ).(:S)

Li

XL- j
nL-l

XLnL- =L I -2

•l~x, ).(3.89)

• .. XIL-2

I. XL

S.\tThLl-L Ox=

L-2

nL-21/•~

= [ wLxL)w,~ (.3.892)

-nL-3(E7"'•n- WL L-2i L-3\

rL-2 -3 L-2 i - 3 
(393 0)

Xt--3 =E'L n-

special case.x

itI-k5 ý-

•~L- nLi - n2 - L-3 2
= [ L : 9 I-X ( k, j = (3.92)

L-_2(E ,•- n-L --O~~~~~~WL•xi ) V U - - xL3(-3

=-(• 2L- t n4- ,. L !

O ij .=i: : ii

(D. wit resec tow o ahtile(,i eo .w onie olwn

Sspecial case.
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Special Case:

A commonly found case for two-player differential game problems is that the cost

function J is the function of the final state xv. We have only considered the case of

one control variable for both players. Thus. J = Ji(XN, 'I,'" ,'N, 01,'.. • ON)

(refer to the pursuit-evasion game problem in Section 3.5). Both players try to

maximize/minimize the cost function J = Ji(XN, W,., N, 01" , ON) subject

to a set of difference equations:

max min J=J(xN,g'1,'",g'N,tO1,'",dN),(01,"'",Pn (01',•

xn =/f(Xn-l0n-1,•bn-l), n=1, 2,... N,

where 61 E 4 and 0i E 1, i = 1, 2 ... , N. In this case, the neural control problem

for the case where 1' is known is formalized as follows:

min Ji(XN,I0,-" ON, 0," ON),

Xn = f(xn-l,0n-i, •n-), n=1, 2,... N,

and the control sequence (i1, 62, ...... •N) is given by 6, = $L(WVl,''' WL, XI), i=

1,2,...,N, and the updating rule takes the form
, 8JI

w7 (N) = w7 (N - 1)- a".-(xNi ,... ,tI'N,W), (3.94)

r]=1.2.

=l, 2, ... ,

which means that updating the weights happens at the (N-1)th step.

3.6.2. Implementation

In order to use above updating rule in real time, an on-line scheme has to be

considered. A consideration is shown in Figure 3.19.

• , ..• ,' , • . ,: , _/
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C C C'•0- t ~t 1 N

to t1  t2 t3

Z I: Identification Process

C: Control Process

Figure 3.19: Identification-Plus-Control Process

An identification-plus-control period is from to to t3 , which has three subinter-

vals: [to, ti](identification), [ti, t2](updating weights), [t2, t3](control). The identi-

fication part identifies the control strategy of the opponent based on the environ-

mental information (see Section 3.5). This process has been thoroughly discussed

in Section 3.5. Evaluating the weights of the network happens in the subinterval

[t11',tN] or [tilt 2 ]. In each of the small subintervals [t1 , tj(j+J)], i=l, 2, ... , N-i,

the weights of each layer are updated. The process is repeated and ends at t 2 . At

t2 , actual control is applied to the system.

3.7. Applications of the Learning Algorithm To the Prob-
lem of Aircraft Control In The Presence of Windshear

The particular problem we are considering here is that of control of an aircraft

"encountering windshear after take-off. Much effort has gone into modeling and

:/ identifying windshear: e.g. [23, 100], but only some of it has been concerned with

the design of controllers to enhance the chances for survival. Among these are the

studies of Miele[63] and of Leitman[55], et al. A stabilized controller is proposed

by Leitman in which no a priori bounding information is needed.

"In the last section, we already derived the updating rule for the neural con-

troller for the problem of a differential game with neural networks. Since the

updating rule can be applied to many general control problems, we shall use the

. / -

"< \.,
. I - I / '
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results derived in the last section for our aircraft control problem. \Ve shall present

simulation results also. The simulation results are not only reasonable but also

advantageous over the controller proposed by Leitman.

We use the following notations:

Notation

D fdrag force. Ib,
*1 ~~~~~~deffoc untms, ecj = gravitational force per unit mass, ft sec-

h 1ef vertical coordinate of aircraft center of mass (altitude), ft;

L flift force, Ib:

m df aircraft mass. Ib ft-' sec2;

0 dmass center of aircraft;

S a reference surface, ft2 ;

7 deft time, sec;

T dthrust force, 1b;

1'L--f aircraft speed relative to wind based reference frame, ft sec- 1;

delW =, horizontal component of wind velocity, ft sec-';

IVh =L- vertical component of wind velocity, ft sec- 1 ;

x = horizontal coordinate of aircraft center of mass, ft;

def
e = relative angle of attack, rad:

def•,= relative path inclination, rod:

b = thrust inclination, rad;

plefair density, Ib ft2 sec2.

.7 " " '/". 7 .i "" ;<""//' " 7

S.2.. - " . /\ , . " .. . k ., " .. ' " '
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3.7.1. The Problem

Following Miele's lead, we employ equations of motion for the center of mass of

the aircraft, in which the kinematic variables are relative to the ground while the

dynamic ones are taken relative to a moving but non-rotating frame translating

with the wind velocity at the aircraft's center of mass. The kinematic equations

are

- Vcos(Q-) + W", (3.95)

h = Vsin(-7) + Wh. (3.96)

The dynamical equations are [5,]

mV Tcos(a + 6) - D - mgsinr' - m(Wlcos-y + Whsin-y), (3.97)

mV4 = Tsin(ct + 6) - L - mgcos- - m(W--siny - WhcosT1), (3.98)

where T = T(V) is the thrust force, D = D(h, V, a) is the drag, L = L(h, V, 0)

is the lift, and W, = W,(x, h) and Wh Wh(x, h) are the horizontal and vertical

.windshears, respectively. In these equations, x(t),h(t),V(t), y(t) are the state

variables and the angle of attack a(t) is the control variable.

A discrete-time version of equations (3.97) and (3.98) is given by

Vk+i- f1(VkTk,Dk,-,kJV~k,Whk,Crk)

- Vk + Tkcos(ak + 6)At D_ At gsinD- kAt _ ( xWkCOSIk + Whksinfjk)At.
m m

-yk+i = f2(Vk,Tk,Lk•,7kVk,WJhkitzi)

-" Tksin(ak + 6)At LkAt gcosykAt (Wksin,'k - VWhkCOS1k)At,
mVk mVk MrVk Vk

(3.100)

V -- - - -,<z*
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where the notations WVk, W'hVk denote the variables I,47(t), Wh(t) at the time t =

k. Our goal is to design a controller a = COk such that the quantity [hk+l - h,]2 is

minimized, where hk+l is a value calculated from 14+4 and Ok+i and h• is a given

value. The cost function is given by

J(k + 1) = (V1 +lsinyk+l - h)2. (3.101)

The neural controller is designed so that the weights update at each step to

minimize J(k + 1).

3.7.2. Assumptions

The following assumplions are the same as Miele's[55]:

1) The rotational inertia of the aircraft and the sensor and actuator dynamics are

neglected.

2) The aircraft mass is constant.

3) Air density is constant.

4) Flight is in the vertical plane.

5) Maximum thrust is used.

3.7.3. Bounded Quantities

In order to account for aircraft capabilities, it is assumed that there is a maximum

attainable value of the relative angle of attack a; that is, a E [0, a.], where a. > 0.

The range of practical values of the relative aircraft speed, V, is also limited, that

is,

V < Y < V, (3.102)
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where V > 0 and V > _ depend on the specific aircraft[55].

3.7.4. Force Terms

The thrust, drag and lift force terms can be approximated (55] by

T = Ao+AIV+A 2V 2, (3.103)

D = -CDPSV', (3.104)
"2

L = -CL pSV2 , (3.105)
2

"where CD = Bo + Bja 2, CL = Co + Cla. the coefficients A0 , At, A2 depend

on the altitude of the runway, the ambient temperature and the engine power

setting. Bo, B 1, Co, C1, on the other hand, depea,, on the flap setting and the

undercarriage position.

3.7.5. Windshear Model

In this work, we utilize the windshear model [55] described by the following equa-

tions

;.' = -W~osin(2-rt/To),

Wh = -Who[1 - cos(27rt/To))/2, (3.106)

where WV and Who are given constants, reflecting the windshear intensity and To

is the total flight time through downburst.

3.7.6. Controller Design

We employ a neural controller with one input layer of four neurons. TilC input

variables to the network are V, V-',7,f. The contrcl output is given by ao =

- / *., . -, . i - - _ . . . - : , . . . . .________ -- '- S
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(wI(V - V(0)) + wYf" + w3("- -Y(0)) + w4,t), where the initial values V(0) and

y(O) will be given in the next subsection. The threshold function 0 is the sigmoidal

function T(x) = A where g is a design gain and A is saturation limit. In

our study A = a.. As discussed before, the formula for updating weights is

aoJ(k + 1)
wi(k+1) = w(k) -- a, wi(k) ' (3.107)

where aw,(k) is given by the following set of equations

OJ(k+ 1) OJ(k+ 1) Ok(
O~wi( k) 190k Owi( k) '

OJ(k + 1) = OJ(k + 1) df2 (.) OJ(k + 1) df,(.) (3.109)
Oak 'Yk+1 daM OVk+l dak

OJ(k + 1) = 2(Vk+lsinyk+, - h,)Vk+lcos'yk+l, (3.110)
07-k+l

aJ(k + 1) = 2(Vk+hsinT 7+l - h7 )sin-yk+l, (3.111)
OVM1.1

df2 (.) 0f2(.) 0 2(.) OLk
dak Oak + OLk Oak' (3.112)

Of2(.) TkAt
Oak---- cos (a k + 6), (3.113)

Of2(.) At
=L - (3.114)O9Lk M V'

UL, 1 2
Oak _ 1CIpSV , (3.115)

O 2

da, = Oak +0DM Oa(' (3.116)

=f (.) -a i n(- + 6), (3.117)
Oak mra

=f ) =- , (3.118)
ODk m
ODk 1
Oak -•BpSVk. (3.119)
aak
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3.7.7. Numerical Data

As. a specific model, we use one model for a Boeing-727 aircraft with JT8D-17

turbofan engines. We assume that the aircraft has become airborne from a runway

7. ~located at sea-level. The data are identical to those of M.Viele

C = 30/.sec,

Ao = 44564.0 1b,

A, -23.98 1bf t's'ec,

A2  0.01442 !bft -sec,

p =0.002203 Ibft-seC2,

S =1560 ft,

Bo 0.0218747,

Bi 0.6266795,

Co 0.2624993,

C, = 5.3714832,

mg = 180000 1b.

V = 184 ftsec'

V= 422 ftsec&',

ifAt 0.001 .Sec,

h, 33.6807,
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while the initial conditions are x(0)=0 ft, h(O)=50 ft. and V(0)=276.8 ft/sec.

"1(0) = 6.989'.

3.7.8. Simulation Results

Numerical simulations were carried out for the case where the windshear intensity

is W'/lIWho = 50/30. Simulation results show that the neural controller performs

well in the presence of wind. From the windshear model, we know that in the first

30 seconds the horizontal wind blows against the aircraft. In the frist 20 seconds,

the aircraft gains the altitude. As the wind becomes less strong, the lift of the

aircraft decreases and the aircraft gradually slows its climbing rate and begins

losing it altiude at the 20th second. To compensate this, the angle of attack

increases correspondingly. This is shown in Figure 3.20. After the 30rd second,

the horizontal wind blows in the direction of the aircraft which continues loos:ng

its altitude even through the angle of attack increases to try to compensate the

loss. As the wind becomes less stronger from the 45th second to the 60th second,

the aircraft increases its altitude.

Under the same conditions," the neural controller works better than those of

Leitemann's and Miele's in the sense that the control value reached the satured

limit (in this case 16 degrees for the angle of attack) for only short period of

time. The performance of the aircraft is almost the same as that of Leitman.

That is because the angle of attack did not reach high enough from the 45th

second to the 60th second to compensate the loss of the altitude of the aircraft.

The reason is that the greatest descent algorithm has low convergence rate. To

improve the performance, one should consider using an optimization method with

' ' . . ... "/ ) i ": -''" ""•/.. ...

t:" ~ ~ ~~~i -.. ,. ,, /r;



a higher convergence rate. In fact. this is one of our further research directions.

For a windshear with stronger wind intensity, e.g. W/,Zho = 80/48. we need

* to adjust the four weights accordingly. With this type of neural controllers, thle

performance depends on the sensitivity of the gradienE of the cost function to the

i ,change of the measure error. With a suitable choice of learning rates a, a 2 , a3, a 4 .

the performance should be improved.

"" .+"

/ 1 64.

Figure 3.012,lain

'+ "' 10

Figre .20 SiulaionResults For the Aircraft Control Problem
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4.
Optimal Control Problem in the Layered Defense Project

4.1. Introduction

In this chapter, an application of artificial intelligence methodology, more exactly,

a rule-based expert system, in a class of pursuit-evasion game problems based on

the Semantic Control Theory will be discussed. The object of this effort is to

apply the principles of the semantic control theory to situatioi, assessment in a

layered defense system. A tactical decision aid has been developed to assist its

user in the selection of heading, speed, and countermanuevers in the presence of a

real or potential threat. The project, started in June, 1991, is a cooperative effort

of the Center for Semantic Control, Washington University, and the El-ctronics

and Space Corporation and has been proven to be successful.

A game problem of multi-pursuer, single-evader is the main one for this project.
iA

The following players exist: one evader, also termed Ownship. several purs-,ers.

and a limited number of shadowing players engaged in the game situat ion. l'hero

are two types of pu suers: [i]\ primary pursuers which usually represent aglresstive

aircraft, equipped with air-ti-air and all-aspect missiles: [ii] secondary pursuers

which t.,,pically re.prcsent th offensive missiles launched by primary pursuers.

Both primary pursuers and th evader have the capability of spawning shadowing

players which represent passiv, objects to blind the opponents, such as flairs. Dy-

namics can/cannot be incorporated into the shadowing players, depending on the

types of shadowing players used. The initial stage. of the project will discuss the



- a r-i situation with one evader, one/several secondary purslers and a limited number

of shadowing players for both the primary pursuer and evader.

The TDA has no control over the strategies of either primary pursuers or

-r *...secondary pursuers, yet it has the capability of detecting and identifying their

-. strategies and maneuvers, mainly by means of. Contact Reports. The contact

reports contain enough information about the pursuers and the evader, such as

location(coordinates), speed, heading, bearing, etc., all of which can be processed

to assess the situation. The TDA receives the Contact Reports every fixed period

of time so that new information can be updated periodically. While the human will

* .,.assume the role of the controller, the functions that the TDA will have to perform

* -B using new information to assess the current game situation, etc. Processing new

~* .. information from the contact reports includes updating the information about

each of the players and storing the old information on each player to an instance
of the class OLD. Once the process is finished, a role or the optimal control

strategy will be used to govern the next movement of the evader. A detailed

discussion is given below.

As shown in Figure 4.1, the structure of the TDA is organized hierarchically.

ýJ Each player in the TDA is called an object. Typical examples of objects are the

primary pursuers, the secondary pursuers, and the evader which are also instances

of some appropriate class. Each. object belongs to one class which is organized

/ '~.hierarchically. Each class is a subclass of its parent class, and all classes are the

subclass of the root class cal!ed "ROOT". Each object has its attributes, stored

in memory called "Slots", which are either inherited from its parents or Iccally

resident. Associated with each object are the rules, methods, and functions which

4
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can be used to interact with objects. The information about each player of the

game, capabilities for each player, and game situation are all sto-ed in the slots

of each player. Table 4.1 summarizes the slots for the primary pursuers and the

evader. An object oriented formulation is selected because it allows incremen-

tal rcfinement of its situation assessment, knowledge of pursuer's capability, and

evasion strategies.

PxL aLy seccn d -PSy
s %;e r =S. Old

Old O~d

Figure 4.1: Object Hierarchy

Table 4.1: Table of Slots

P'aye K.n Eo -t vaPer 5a.2 s

Flee Hc--.e E!!eC-.ess E'!cvve7- ess
dMaxSpeed De -a- c.I Deay

Rars•ge Fe:-cep -on R.s:k Le.el ctL-at2 n
Seaw•-ig Max S--Ie D>.'st•ca. S:at
Head -.g P&.-c D. s,-.ce E'fectve-.ess
Co-,act MD N ..er of
ClassL-,fiaon Shadc'"-g Players
Event
Con.!de.ce

The mission of the evader is to depart from Home, while evading the pursuit

of its offensive opponent, and to head to a fixed location called "Destination".

e" , .
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The role of the evader is to assess the game situation, detect the pursuer strategy

if necessary and make a decision based on the updating information. It does

not assume any offensive capabilities. With this assumption, the TDA presents

suggestions of movement for the user's approval. The movement of the evader.

is governed by the rule fired from the rule-based system or the optimal control

strategy. WVhether a role or the optimal control strategy will be used depends

on the range between two players. Assuming a fixed distance, we can have more

than one rule to select, in which case a quantity called "utility" plays a key role.

A utility is a positive real number scaling from zero to one, associated with each

pursuer. The utility can be thought of as a measurement of threat to the evader.

The pursuer with the highest utility value is said to have greatest threat to the

evader and, hence should be paid the greatest attention. The utility of the pursuer

depends on five components - range, heading, elevation, speed and bearing - all

of which has been obtained through processing the information from the contact

reports. A detailed discussion of the utility calculation can be found in [25].

/ Recent wcrk in the area of Semantic Control Theory [76] provides the means

for our project. In this paradigm, a control problem is broken into three blocks,

namely, Identifier, Goal Selector, and Adaptor [761. In \this project, the Goal

Selector is designed for the following [i] To select the ru e from the rule-based

system based on the information provided by the Systen Identifier, which has

preprocessed data from the Contact Reports. [ii] To activa e the optimal control

law based on the information of range, and [iii] To comput~ the heading for the

next movement of the evader. The decision of the Goal ~elector depends on

several factors: range, heading, bearing, speed and elevation. Whzn the pursuer

is within a certain distance from the evader, the optimal control law is activated

to achieve a fast response to the situation. In other cases, the Rule-Based system
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plays a key role. There are four sets of rules [251. They are: [i] the set of rules for

the case in which no pursuers are within a specified range, [ii] the set of rules for

the case in which one primary pursuer is within a specified range, [iii] the set of

rules for the case in which one secondary pursuer is within a specified range, and

[iv] the set of rules for the case in which both a primary pursuer and secondary

pursuer are within a specified range. Each of these four rule sets can have several

rules. The rule set appropriate to the situation is made active and used to make

recommendations for safely moving the evader. Which rule will be fired depends

on the value of utility associated with each pursuer which represents the measure

of the safety for each player.

The function of TDA is to provide a movement set-point recommendation for

the user. Therefore, a man-machine graphic interface is an essential part of the

project. A human assumes control of the final decision. The Adaptor consists

of four different graphic displays: Action Panel, Control Panel, Local View and

Global View (see Figure 4.2). The Action Panel shown in Figure 4.2(a) displays

the setpoint recommendation for the user, heading, speed and location of each

player and the current rule being used. There are several buttons available for

the user to decide either to use the recomnmendation of the TDA or to enter his own

command. The Action Panel is updated in real-time so that the user can have

a view of the on-going game situation. The Control Panel (-.ee Figure 4.2(b)),

on the other hand, is in control of the behavior of each player, monitors the

game situation, and has the authority to change it dramatically. The Control

Panel initializes the game, modifies the attributes of each player in the game, and

runs/stops the game. The Control Panel is actually the' first display shown to the

user when the simulation begins. Two coordinate frames are used in the project.

They are the inertial frame, which provides a global view for the game, and the
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frame centered at the speed direction of the evader. who provides a view locally.

Local and Global views (see Figure 4.2) provide the basic displays in the initial

stage of the project.

#diet .191 3 ,,odi-F

rt 3 fed 15 i/,,,(a) (bSP' ,

(b) .0-

ouadT.I uner the W1in s ei

1;8. 1.qp i4 e1io-l III

ne n a o , s dicush optiml contl p l

/Z_ . ,e dgThe - TD i"" currentl imlmet d ).- onaDLLSSE 33D .Proa
'-'-- .... •' " -'• ",'•'i •.. i- • l•T11,

Comp~~~iter. using KAPPA~~ -pT adTobounethWiowevr-

aries from the purojectly Thpemckrontd for thi proble SYsT as folows Thero

i' / Layered Defense Project's aim is to study, analyze and solve a class of pursuit-

S-/"'evasion problems and to develop a tactical decision aid. which, in the presence

of a real-time or potential threat. aids its user in the selection of heading, speed,
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and countermaneuvers. An assumption at initial stage of this project is that

there are two players in the game situation: one pursuer and one evader. The

control strategy for the pursuer is generated by the so-called Scenario Generator.

which also provided the Contact Report to TDA. The evader has the capability

of identifying the control strategy of the pursuer but has no control over it. The

role of the evader is [i] to access the game situation, to identify the strategy of

pursuer, awd [ii] to take corresponding actions governed by the rule fired from the

rule-based system or by the control va'ue of the optimal control law, depending

on the range R between the pursuer and him. If R is greater than some given

value Ro, the evader may want to continve doing what he has been doing. While

R decreases to some given value R, with R, < Ro, which usually represents the

situation that the pursuer is getting closer to the evader, the value of utility for

the evader is high enough to make a rule fired from the rule-based systems. Which

rule will be fired depends on the utility associated with the rule [25]. However, if

the rule fired for governing the next movement cannot improve the situation and

R further decreases to some given value R2, where R2 < R, < Ro, an optimal

control strategy is employed to yield an accurate, fast response to the situation.

The assumption that two players are engaged in the game is reasonable since only

one aggressive player shows the highest potential threat to the ownship and hence

will be paid much more attention than others, if they exit, when the optimal

control law is used.

With the line-of-sight model, our problem can be described as follows: given

•2, a control strategy for the pursuer, find an optimal control for the evader, i.e.,

Oloptimal, where oI •I < 1, 10'ioptimall < 1, such that the range between two

players reaches some prespecified value in minimum time.
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4.2. Optimal Control Problem

4.2.1. Line of Sight Coordinates

A line-of-sight coordinate model has been used to study the pursuit-evasion game

with fixed role determination [17, 18, 19, 41, 83. 92]. Using the line of sight as

common reference, we have three state variables. These state variab!es are the

raklge 0 < R < oo and the two off-boresight angles -r <_ oi < -,r,-r < •2 < i"

[18, 19].

The equations of motion in the general line of sight coordinates are

- = -(cosoI + Cos0 2)1 (4.1)

.= (sinki + sino2 )/R + a,, (4.2)

.= (sin(1 + sin,62)/R + a2 , (4.3)

where a, and a2 are the respective control variables (turning rates) constrained

by

jlail < 1, i= 1,2. (4.4)

The geometry of the engagement is depicted in Figure .4.3.

Figure 4.3: Geometry of the Engagement
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A major element in the differential game formulation is the definition of the

terminal surface (target set). Such a terminal surface represents the firing envelope

of the pursuer aircraft weapon system. The firing envelope of an air-to-air missile

for each player i (i = 1, 2) is a subspace defined by an implicit equation of 3

variables

F(R, oi, a,) = 0, (4.5)

where R is the range (the magnitude of the line of sight vector), and Oi and ai

have the relation

+ = + i r. (4.6)

In [18], Davidovitz et al specified the terminal surface of the game, a special form

of equation (4.5), as

R(t,) t_ n

= 3, (4.7)

where t1 is the final time of the game and /3 is some prespecified positive value.

With this terminal surface, one can evaluate the necessary conditions, which are

used to obtain the optimal control strategies. Such control strategies can be

evaluated, using retrointegration, by calculating the so-called optimal terminal

strategy at the terminal surface. The target set eq. (4.7) has been successfully

used for the pursuit-evasion game analysis.

On the other hand, for an air combat duel between similar aggressive fighter

aircrafts, both equipped with the same type of guided missiles, different target sets

are used to represent the effective firing envelope of an all-aspect fire-and-forget

. f ,
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air-to-air missile

i 1,2, (4.8)

R:R(j < n </i(€.), j=1,2, i .4 i, (4.9)

where 3 is the off-boresight limit for missile firing, while R and are the minimum

"and maximum normalized firing ranges, respectively, given by

= ai + bicos~j, (4.10)

= (Ro)i - I1j + sinojl, (4.11)

where ai, bi and (Ro)i are the normalised parameters (see (19]).

For our problem, a terminal surface similar to that in [18] is used, i. e. R(tf) =

j3, where /3 is a prespecified positive value. In [18],/3 is specified to be less than

the initial distance R(to) since /3 represents the distance for capture. In our

case, however, f3 is a positive value greater than R(to) since our problem is that

representing escape.

A /In general, the solution consists of the decomposition of the game space into

four regions: the respective Winning zone of the two opponents, the draw zone,

and the region where the game terminates by a mutual kill. Davidovitz et al [19]

"presented a qualitative study, the first of its kind, of an air combat between two

similar aircrafts equipped with modern air-to-air missiles, which is modeled as

a two-target differential game. Their results of the study also reveal several yet

unknown elements to be expected in later air combat.

For our problem, since the initial stage of the project only discusses two players

(pursuer and evader or termed as "Ownship"), the line-of-sight coordinate model

is ideal for our quantitative analysis. However, unlike (19], where two aggressive

. .4.
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aircrafts with all-aspect fire-and-forget air-to-air missiles are considered. we have

a limited number of players engaged in the game: pursuer and evader. To better

model the real-time pursuer-evader situation, we modify the classical line-of-sight

model in [17] to incorporate the speeds of two players

R= -(vPcosýI + vco0€ 2 ), (4.i2)

0 = (vpsino, + Vesin0 2)/R + al, (4.13)

=2 (V=sin~ + ves i f 2)lR + a2, (4.14)

where the state variables R, 01, 02 have the same definitions aý before, vp repre-

sents the speed of the pursuer and ve for that of evader. Again, the respective

controls (turning rates) are constrained by

jai < 1.

4.2.2. Optimal Control Law

The problem can be stated as

f?
minJ = min dt, (4.13)

subject to

i? = -(,PCo-s' + v,:co.-o0), (4.16)

j= (vvsino, + vesinfo 2 )/R + a,, (1.17)

0 = (vpsin(x + v~sin0 2)/R + &2, (4.1S)

where (R(to), 01 (to), 0 2 (to)) = (Ro, 0 1o, o2 0 ) and (Ro, 01o, 02o) are given and the

control for the pursuer has been replaced by its estimate value &2.

-.-- 7// , , , . - • " . - " .' . . _ . . : _ -. .... - -. - ; - :: . " :' ". .
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Consider the Hamiltonian given by

i.4

H =A 0 + AR(-(vpcos&j + vecoso~2 ))

+'+ A2 (vsino1 + vesinO2 )

+(Ala, + A2&2), (4.19)

where A0. AR, A, and A\2 are the respective components of the gradient vector

satisfying the adjoint equations

At + A2
,R =(VpSin~ + v(sinb( -R2 (4.20)

At + \2
,= (ARsinl - -R cos~l)vp, (4.21)

A1 + A\2 s)v,(.2
A\2 = (-ARsin0 2  R cos0)V,, (4.22)

A0 = 0. (4.23)

The optimal control is obtained by

min H, (4.24)

which yields

a,(t) = -sgn,\I(t). (1.25)

Next, we shall state a lemma which will be used later.

Lemma 4.1 The following equality holds

V Xt + A2A R ) = C, (4.26)R

where C is a constant.
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Proof: Differentiating the right hand side of eq. (4.26), we have

S 2ARAR + 2( A1, + A2 (A, + A2)R - (A, + A2)RR,\R2

A (vsin6 + v2sin0-2) + A,R +,2 R 1+)2

x ((-,\Rsin61vp R ACost.ivp)RR

A1 + A2
+(--,\Rin- 2,e - R COS02V,)R

+(A, + A2)(Vcos6o + ,,,cosý2 ))II]
A, + AA 2

2---r-[ARvpsinml + ARvsin02 - ARvpsin(l

-'--- A--vpcos_ _ - A vsin A2- A, + A2 2

R R
A, + A2+ R (vPcos6i + VeCOSý2)]

=0. (4.27)

Thus, eq. (4.26) follows.

Q.E.D.

REMARKS:

The constant C could be zero or nonzero. If C is zero, An(t) = 0 for all t > 0.

In particular, ARM0) = 0. Thus, we may choose ARM(0) 0 such that C $ 0. For

C - 0, we can normalize the fornula (.1.26) such that
A2? + ( Al + A\')..

Using eq. (4.17), eq. (41.20) can be written as

AR = (vpsiI6 1 + vesin12)(" 1 + A_2

-R,

= (~� �- )1(-\A, + ( )
al(R

\2(•- )• R,: (4.29)
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Likewise,

AR (1 - ( 2 " 2) (4.30)

Define 0(t) for 0 < t <t as

((4.31)

where 0< t < t1 and 01o or

01 = "a1 (t). (4.32)

Therefore,

iR = €1+ bl, (4.33)

-IR-

and thus,

arcsinAR = 01 + 01 + Co, (4.34)

where Co is an arbitrary constant. Eq. (4.3-1) becomes

AR = sin(O1 + 01 + Co). (4.35)

Now for t=0, we have

,\R(O) = sil(01 (O) + 01(0) + CO)

- sia(0io - 01o + Co)

- sinCo. (4.36)

Thus,

ARO sinCo. (4.37)

- - -/ .. .I'' . . . L - • ji • - / , _
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Now,

v -,A = cos(O, + 0o + Co). (4.3S)

Therefore.

A, +A 2'A = -vp(ARsinl + R cos~i)

= -vp(sin(1x + 01 + Co)sin6 1 + cos(0 1 + 01 + Co)coso 1 )

= -vPcos(Ol + 0 + Co - ( 1)

= -vpcos(0 1 + Co)
= -vpcos(Co - (-o - jrl(r)dr). (4.39)

Without loss of generality, we may assume that o1 (r) = = constant for 0 <

r < ti, where tj is the first switching time greater than zero.

Then,

AIMt -(o) + v' sin(-Oo - 7-10 t + Co), (4.40)

where

7 = -sgn[Aol. (1.11)

The value of can be obtained by letting A1\(ti) = 0. In oulr cise.

(CO - 01o) + sir"-'( V,') +

and

t= min tlk. (4.42)
£ik>O

The subsequent switching time can be calculated analogeously.

- - • .- -. .

. , • - ...- - .
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In general, suppose that {tk: k = ,2 ... } is a sequence of switching times and

that

Olk = 01(tk), (4.43)

ARk = AR(tk). (4.44)

Alk = Al(tk), (4.45)

ik sont[\lk]. (4.46)

Then, on (tk, tk+l], we have

V( -,cos(Ok .I(t) + Ck), (4.47)

AR(t) = sin(O1(t) + Ok+l(t) + Ck), (.1.-S)

Ok+l(t) = -- - (r)d, (4.49)

oar(t) - -sgn[AI(t)]. (4.50)

Notice that on (tk-l, tk], we have

AR(M) = sin(01 (t) +Ok(t) + Ck-1), (1.51)

and

Ok(t) = --Ol(tk-l) - (7(r)dr. (1.52)

Again. on (tk-. tki, o7(;r) = ai(k-1) = constant. thus we have

Ok(t) = - (t _) -# ( _ ( t k-lt_ ) (.1.53)

Thus,

ARk = AR(tk)

= sin(O,(tk) + Ok(tk) + Ck-,) (4.54)

, .. 
-. ..
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But

,Jk = m AR(t)t t+
k

li rnSin(31 (t) + Ok~li(t) + (9k)
t-t+

= sin(01(tk) - •1(tk) + Ck)

=sinCk (.5

Letting ARk = 'nk yields

sin(Ck) = sin(01(tk) + Ok(tk) + Ck-1), (4.56)

which is used to determine Ck.

Eqs. (4.43) - (4.50) together give an evaluation of an extremal bang-bang

trajectory base(' on the choice of [ARO, Al0].

REMARKS:

Dependence of the control a, on 62 is implicit. The corresponding control law can

be evaluated without retrograde integration. Thus, the computation time-savings

is significant. Since the control law is a function of initial values for costates A\

and A,, the final tlime is hence a function of the initial values of A, and A,. Various

non-derivalive opt ilization techliniquIes call b eI(j1ployeII to finld I ile oltillial vallec's

for A, and A[. Tie so-called Box's algorith in will be used for oulr problemi I.iecause

of its well-known ineq iiality constraints, and nonlinear objective finiction.
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4.3. Optimization Technique

4.3.1. Box's Complex Algorithm

The Problem

This algorithm is to find the maximum of a multivariable, nonlinear function

subject to nonlinear inequality constraints

max F(x1 , x2," ,- X) (4.57)

subject to Gk <5 xk Hk, k 1,2,' N,

f,(;rl , x2,.' ,XN) < xi < F,(x, X2,' ,xv), i = ,+I..... .

where the functions fX(a i, x2,'" 'x), fl(, ., ,.v) are dependent func ions

of the explicit independent variables xi,x2,".,qX,. The upper and lower con-

straints Hk and Gk are either constants or functions of the independent variables.

Method

,-The procedure is based on the "complex" method of M. J. Box. This method1

"is a sequential search technique which has proven effective in solving problems

with nonlinear objective functions subject to nonlinear invequalitv const raint s. No

d'erivatives are required. The lprocedure should tend to find the global iMnxinhuiu

duie to tihe fact that the initial set of points arc randohily scalter t,,41t lhr,,uuh,,1

the feasible regicn. If linear constaints are present or equality constraints are iin-

volved, other methods should prove to be more efficient. The algorithm procc(,ds

as follows:

1. An original "complex" of K > N + 1 points is generated consisting of a

feasible starting point and K-1 additional points generated from random
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numbers and constraints for each of the independent variables

xij= Gi + ri,j(H, - Gi), (4.5S)

i= 1,2... ,N.

j =1,2,.,K-1,

whcre rij a.e random numbers between 0 and 1.

2. The selected points must satisfy both the explicit and implicit constraints. If

at any time the explicit constraints are violated, the point is moved a small

distance 6 inside the violated limit. If an implicit constriant is violated,

the point is moved one half of the distance to the centroid of the remaining

points

xj,j(new) = (xij(old) + ti,J)/2, i = 1,2,...,N, (4.59)

where the coordinates of the centroid of the remaining points, xi, are defined

by

1 K

=i'C K 1 [k Xik - cd(), i= 1,2.. .,.N. (4.60)

This process is repeated as necessary until all the implicit constrainuts are

satisfield.

3. The objective function is evaluated at each point. The 1' new point is luated

at a distance a times as far from the centroid of the remaining points as the

distance of the rejected point on the line joining the rejected point and the

centroid

x ij(new) = a(i, - xi.(old)) + .f~, i= 1,2,.-.,N. (4.61)

_Ali
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4. If the new point repeats in giving the lowest function values on consecutive

trials, it is moved one half the distance to the centroid of the remaining

points.

5. The new point is checked against the constraints and is adjusted as before

if the constraints are violated.

6. Convergence is assumed when the objective function values at each point

are within f3 units for -y consecutive iterations. An iteration is defined as

the calculations required to select a new point which satisfies the constraints

and does not repeat in yielding the lowest function value.

4.3.2. Implementation

For our problem, Box's complex algorithm is used to find the minimum of a

multivariable nonlinear function subject to a set of nonlinear equality constraints

min J(A1 o, Ao), (.1.62)

subject to

-9.0 < ,\ 0 '< 9.0.

-1.0 < ,\10  1.0.

"? = -(v PcosQo + vcoso62 ).

= (vpsino, + Vsin1 2)/IR + oi,

2 = (vpsinol + v,sin0f2 )/R + 02,

o¢(t) = -sgn[A 1 (t)], t E (tk,tk+1I

Al(t) = Al(tk) + -•-sn(-qOlk - ao*(t - tk) + CO), t E (1•k tk+l]
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Olk = 01(tk), t E (tk,tk+,]

o• = .- sgn[Al(tk)], t E (tk, tk+l]

Sil = Skil(01(tk) + Ok(tk) + Ck..),

Co = sin-1 (AnO),

where J(A10,o '\o) -tI - to, to is the initial time value and t! is the terminal time

at which the distance between two players reaches a given value. Therefore, in

our case, we have N=2, M=N=2.

For our problem, the following parameters have been used

Gl = -9.0,

III = 9.0,

G2 = -1.0,

H2 = 1.0,

K = 4,

13 = 0.001,

1 = 3,

-t = 3,

= 0.01.

We have two independent variables: A.\0, '\no and we do not have constraint fiiuc-

tions of explicit independent variables, in our implenentation, after we randonlv

generate a complex of K points, we compare the values at each point of the com-

plex with that at the centroid of all points. If the value at the centroid is the

highest, we reselect the complex of starting points until the highest value does

not occur at the centroid of all points. Figures 4.6 and 4.7 show the simulation

results of our problem.



:31

In Figures 4.6 and 4.7, lmbdaR and lmbdal represent the values of AR and

A10. The solid line represnts the trajectory of the evader and the dashed line

renresents the trajectory of the pursuer. From these plots, we can see clearly how

the values of AR and A10 affect the trajectories of both players.

The parameters used in our simulation are:

The speed of evader: tv, = 20.0 (units).

The speed of pursuer: t'p = 25.0 (units),

Initial distance: Ro = 100.0,

Final distance: Rf = 200.0,

Initial off-boresight angle: 61 = 0.52,

Initial off-boresight angle: 02 = 57.33,

Fixed control for the pursuer: a2 = 0.55.

The goal of the optmization technique is to minimize the time such that R in-

creases to a given value Rf.

From above, we know that although the optimal control law is obtained as-

suming that the speeds for both players are the same. the control law also works

fine for the case with diff'erent speedý!.

In actual imlplementtation, tim process of control ,vav lamtion is lc.scrilw,,d as

follows. As shown in Fig,.ire 4.4. [tl, t 41 is one sample period. In this sample period.

[tl, t2] is the subinterval for identifying 0'. Once &2 is obtained, an optimization

process using Box's complex algorithm is carried out for the evader to obtain

a sequence of optimal control values {u(t 3),u(t6),...}. Once the optimization

process is completed, a control value from the sequence is issued to govern the next

movement. This whole process in [tl, t2] repeats for subsequent time intervals (see
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Figure 4.4). However, if the &2 is assumed fixed for entire encounter. a slightly

different scheme (see Figure 4.5) will be used, in which only one identification

process and one optimization process are needed and control values are issued

following the optimization process.

I optimization process C I I optimization process C mI ! -.• Time
tI t2 t 3 t 4 t5  6 t 7

Figure 4.4: Implementation Scheme 1

I optimization process C CC I ' •Time
t' t2 t 3 t 4 t S -1 tn

Figure 4.5: Implementation Scheme 2
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5. Conclusion

It is said that the community of Automatic Control is in an evolutionary phase,

which is not a revolution. This seems to be true. But although we have expe-

rienced the astonishing revolutionary phase of this field in the early sixties, we

should not ovorlook the great progress we have made and remarkable accomplish-

ments we have hchieved since then. We should not forget that each single step in

this long march was made by the joint efforts of each individual in our society,.

It is the author's hope that this dissertation will be one of those small con-i

tributions towards the progress of modern technologies in the field of artificial

intelligence methodologies in control systems. The second chapter of this disser-

tation mathematically formulated the control systems inside the neural networks.

Introducing a s~nall feedback loop INSIDE each neuron, instead of a feedback Con-

nection in the etwvork, we presented the discretized version of recurrent neural

networks. UsinL these types of neural networks, we showed how to use the inter-

nal states directly to construct a feedback control law. What is more import ant.

a network of this type is itself a system and not an unknown "Black Box-. and

thusits input-output performance can be stli(lied just as is the case for a classical

control system. Therefore, many conventional synthesis methods can be direct ly

borrowed to design a controller.

The third chapter of this dissertation. discusses the issues of applying neural

network techniques to classical differential game problems. To model the real-time

game situation more realistically, a configuration, based on the stages in real-iife

/
'3-

, .-. ,
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conflicts, is proposed. Based on the paradigm of semantic control, the config-

uration can be used further to derive two paradigms of differential games with

neural networks. To demonstrate the effectiveness of the method, we carried out

a simulation experiment and studied a pursuit-evasion game problem. The same

principle, paradigm and structure have the potential of being applicable to an

entire class of pursuit-evasion game problems. 'Ae also studied the external learn-

ing algorithm for a neural controller, which may be used in one of the paradigms

discussed previously. To test the algorithm, a real-time aircraft control problem

in the presence of windskear has been studied.

The fourth chapter of this dissertation has discus.;ed the Layered Defense

Project. The project, which was initiated in .June. 1991, is a real-time pursuit-

evasion game problem with one evader and multi-pursuers. Based on line-of-sight

coordinates this dissertation has discussed and solved the optimal control problem

arising from the project. Box's algorithm has been used to find the optimal values

for the costates.

Here, the following areas seem to be of sufficient interest to indicate fiirther

research and investigation:

1. to consider a robust, multi-purpose. real-time controller for various tl\'es Of

al)plica lons and lproblems. a product of a nierger of the adivu.ced thccliniqws

in the areas of artificial intellig(ence and control systems.

2. to more intelligently and massively incorporate parallel computer architec-

ture into a control system, e. g. using neural networks,

3. to incorporate the graphical interface into a workstation-based control sys-

tem,
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4. to establish and fully utilize a data-base for knowledge representation and

"knowledge process,

5. to more intelligently apply neural network techniques for control systems,

which is a promising area since the learning capacity, robustness, and mem-

ory capacity of neural networks provide revolutionary tools and mechanisms

for the future of control systems.

To summarize, we have the following contributions of this dissertation to the

area of artificial intelligence methodologies in aerospace and other control systems:

1. Although several applications are observed in using recurrent neural net-

works for control systems [73, 74, 93], there is no one in the past few years

who has studied the issues of controllability/observability, linearizability

via change of coordinates for such type of neural networks for control sys-

tems. This dissertation has covered these interesting topics and the results

are satisfactory. For the first time, the so-called Separation Principle of

Learning and Control is proposed. The significance of this study lies in the

thoughts of exploring the intelligence/learning capacity and parallel archi-

tectures of neural networks for the purpose of control. This study has shown

the promise for future research in this direction.

2. Motivated by the works in [77, 95], we have developed a new approach to

differential games with neural networks. The approach which is based on

the semantic control theory is more realistic to the real-life conflicts and has

the potential of being applicable to an entire class of pursuit-evasion game

problems. The study is significant for the community of differential games.

In our study, the assumption that both players act optimally at all times
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is no longer valid. This is particularly true for air-combat problems since

during the real combat modeling an entire encounter in a fixed mathematical

equation is essentially not realistic, and both players (assuming only two

players in the encounter) always act according to their opponent's perceived

action and their goals. Therefore, the configuration based on this idea is

much closer to the real-time situation and can be used to develop more

advanced algorithms.

3. The aircraft control in the presence of windshear is an interesting prob-

lem. The learning algorithm, which is originally developed for the neiiral

controller in Chapter 3, is applied to the control of aircraft encounting wind-

shear. Explicit formulas for evaluating weights in a neural controller have

been given. The approach offers the advantages such as being easy to im-

plement in practice, being applicable in several different windshear models

without any change of control law.

.1. Chapter 4 of this dissertation has discussed another aspect of artificial intel-

ligence techniques for control systems: rule-based expert system applied in a

class of pursuit-evasion game problems. Line-of-sight coordinates have been

used by several authors such as Shinar [82. 81]. in study of pursuit-evasion

game problems. Based on the line-of-sight coordinates this dissertation has

discussed and solved the optimal control problem arisling from the project.

There are three main differences between their approaches and ours. First.

their solution requires retrointegration of costate equations, which is usually

very time-consuming. The derived optimal control solution for our problem

has an explicit formula which can be implemented in time-forward fash-

ion. Thus, time-saving in implementing the solution is significant since it

-" -•-

" '" ,i .i/ 1



139

does not require retrointegration which is noirmally performed in computing

cptimal control solutions. Second, the Box's complex algorithm has been

incorporated into our optimal control problems. This particular aspect is

interesting. Third, in our approach, the pursuer's strategy is assumed to

be known and fixed during the evaluation of optimal control while in Shi-

nar's work the control strategies for both pursuer and evader are evaluated

simultaneously. This observation suggests the potential application of our

results in Chapter 3 to this particular project. From above, we can see that

our approach does offer several advantages over previous work.

J-/ ,, - \' /
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